Explaining Gauss-Bonnet Term & Its Significance in Cosmology

  • Thread starter Thread starter anuradha
  • Start date Start date
  • Tags Tags
    Term
AI Thread Summary
The Gauss-Bonnet term is a topological invariant in the context of the renormalized Einstein-Hilbert action, defined by a combination of quadratic curvature terms. While it does not directly affect the field equations due to its nature as a surface term, it influences dynamics when coupled with other terms. Its significance in cosmology lies in its potential role in modifications to General Relativity, particularly in Gauss-Bonnet gravity, which is gaining attention for its promising phenomenological and cosmological properties. There is ongoing discussion about how to calculate its variation with respect to different metrics, indicating a need for further exploration in this area. Understanding the Gauss-Bonnet term could provide insights into the late-time acceleration of the universe.
anuradha
Messages
4
Reaction score
0
hi all,o:)
anybody please give me a physical explanation for the Gauss-Bonnet invariant...
What is its significance in cosmology??does it contribute to the late time acceleration of the universe??
is it possible to find the variation of Gauss-bonnet term with respect to any given metric?if so, how??

-Anuradha
 
Space news on Phys.org
The Gauss-Bonnet term is defined to be a combination/contraction of various quadratic pieces of the renormalized Einstein Hilbert action.

Its something like G = R^2 - Ruv Ruv (one of those terms has all upper indices, the other all lower) + Ruvcd Ruvcd (same thing) where I have missed some constant factors here and there.

Anyway, you can look it up. The important thing is that its a topological invariant, so is nonrenormalized to all orders of perturbation theory. Being a topological invariant, it is also linked to the Euler characteristic of the manifold in question.

Now, it doesn't affect the field equations b/c it only contributes a surface term, which can be elimininated, however it still changes the dynamics b/c of the way it can couple to other terms (if so included).

Why is it important? Well, apart from making calculations easier in regular Einstein-Hilbert gravity, there is reason to believe that in modifications to GR it could play an important role. For instance Gauss-Bonnet gravity (one such modification that is a hot topic these days in gravity research) has a host of nice phenomenological and cosmological properties.
 
I've been doing calculations but not all terms are surface terms(maybe I am wrong) Has anyone do it?
I need to check this thing
 
https://en.wikipedia.org/wiki/Recombination_(cosmology) Was a matter density right after the decoupling low enough to consider the vacuum as the actual vacuum, and not the medium through which the light propagates with the speed lower than ##({\epsilon_0\mu_0})^{-1/2}##? I'm asking this in context of the calculation of the observable universe radius, where the time integral of the inverse of the scale factor is multiplied by the constant speed of light ##c##.
The formal paper is here. The Rutgers University news has published a story about an image being closely examined at their New Brunswick campus. Here is an excerpt: Computer modeling of the gravitational lens by Keeton and Eid showed that the four visible foreground galaxies causing the gravitational bending couldn’t explain the details of the five-image pattern. Only with the addition of a large, invisible mass, in this case, a dark matter halo, could the model match the observations...
Why was the Hubble constant assumed to be decreasing and slowing down (decelerating) the expansion rate of the Universe, while at the same time Dark Energy is presumably accelerating the expansion? And to thicken the plot. recent news from NASA indicates that the Hubble constant is now increasing. Can you clarify this enigma? Also., if the Hubble constant eventually decreases, why is there a lower limit to its value?
Back
Top