Angular momentum - integer or half-integer

paweld
Messages
253
Reaction score
0
Let J be total angular momentum, L - orbital angular momentum and S - intristic momentum (spin). Squares of these operators have appropriate eigenvalues j(j+1), l(l+1), s(s+1). Which of these numbers j,l,s should be integer. I know that spin can have half-integer values. But probably orbital or total momentum values should be integer. Thanks for answer.
 
Physics news on Phys.org
The orbital momentum value must be integer. It results from the wave function one-valuedness.
The total momentum value can be half-integer.
 
j and s can both be half integer. j is one of the numbers that labels a particle species. The s of a specific particle can only change by integer amounts, and since the lowest possible value of s is always -j and the highest always +j, this means that j must be integer or half integer.

Examples: When j=1, s can take the values -1,0,1. When j=1/2, s can take the values -1/2,1/2.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top