Limit as x approaches negative infinity

hangainlover
Messages
77
Reaction score
0

Homework Statement



as x approaches negative infinity, what value does this function approach ?

limit square root (X^2+X) + X






Homework Equations





The Attempt at a Solution


First, i manipulated the given function to take out absolute (x) from the square root



so, what i get is, limit absolute value (x) square root (1+1/x) +x



now, i get infinity - infinity. (looks like an indeterminate form)

I do not know where to go from this point.



Thanks
 
Physics news on Phys.org
Pull the x down into the denominator, then use L'Hopital's rule.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top