How Can You Calculate the Energy Content of Waste Steam in Industrial Processes?

AI Thread Summary
To calculate the energy content of waste steam in industrial processes, focus on the mass of steam produced and its latent heat of vaporization, which is approximately 2200 kJ/kg. The drying process generates 16,000 liters of steam over 40 hours at a constant temperature of 160°C. Velocity and pressure are less critical unless they are extremely high, as the primary energy recovery comes from condensing the steam. Using a shell and tube heat exchanger can effectively capture this energy, even if it converts steam back to water. Understanding these factors will help optimize the energy recovery from the waste steam.
vespak
Messages
6
Reaction score
0
I don't know if anyone can help but I have a friend who wants to capture his waste steam and convert it to energy - that's the easy bit - the difficulty is how to work out how much energy he has in the first place. He is drying wood by heating a container to 160oC over a period of approx 40 hours which produces 16,000 litres of water in the form of steam. That exits the container (2.4 x 2.4 x 6m) through a 400mm flue. In order to capture this I want to put a shell and tube heat exchanger in the flue (I don't mind if this converts the steam back to water, we have another use for that) In order to make this work effectively I need to know what the likely pressure and or velocity does the steam emerge at. I appreciate that there will be a gradual build up in pressure. Its the last 24 hours I am interested in where there is a constant temperature and so presumably a reasonably constant velocity. We already know the saturated steam heat is around 120oC. The only motive power causing the steam to exit the container is the expansion of the air & water vapour/steam inside the container. Fans circulate the heated air inside the container and the flue is sited at the base of the container half way up its length. Any thoughts?
 
Last edited:
Engineering news on Phys.org
Welcome to PF.

You don't really need velocity and even the pressure isn't all that important unless it is very high. The vast majority of the energy to be recovered comes from condensing the steam unless you can cool it well below boiling temp, so by multiplying the mass of steam by the latent heat of vaporization of 2200 kJ/kg you get yourself in the ballpark.
 
Many thanks that's got me going in the right direction.
 
Hi all, i have some questions about the tesla turbine: is a tesla turbine more efficient than a steam engine or a stirling engine ? about the discs of the tesla turbine warping because of the high speed rotations; does running the engine on a lower speed solve that or will the discs warp anyway after time ? what is the difference in efficiency between the tesla turbine running at high speed and running it at a lower speed ( as fast as possible but low enough to not warp de discs) and: i...
Thread 'Where is my curb stop?'
My water meter is submerged under water for about 95% of the year. Today I took a photograph of the inside of my water meter box because today is one of the rare days that my water meter is not submerged in water. Here is the photograph that I took of my water meter with the cover on: Here is a photograph I took of my water meter with the cover off: I edited the photograph to draw a red circle around a knob on my water meter. Is that knob that I drew a red circle around my meter...
Back
Top