Could a 1/r Force Explain the Pauli Exclusion Principle?

Rothiemurchus
Messages
203
Reaction score
1
Could the Pauli exclusion principle be due to a force that
has a 1 / r dependency where r is the distance between two electrons.
Then in the case of electron degeneracy pressure in neutron stars
could we say that uncertainty in momentum x uncertainty in position
arises from a repulsive force - reducing r to 1/2 its value would double
the repulsive force and the momentum if mv x position = 10^-34 = constant
and m stays approximately constant.When two electrons have opposite spins
the force would be attractive (in analogy to electric charges of opposite sign attracting each other).
 
Last edited:
Physics news on Phys.org
How did you come to this ? What exactly is this force you are referring to.
I think this is quite speculative...

The Pauli-principle has to do with the antisymmetry of the fermion wave-function as predicted by QM. So why this force ?

regards
marlon
 
Rothiemurchus said:
Could the Pauli exclusion principle be due to a force that
has a 1 / r dependency where r is the distance between two electrons.
Then in the case of electron degeneracy pressure in neutron stars
could we say that uncertainty in momentum x uncertainty in position
arises from a repulsive force - reducing r to 1/2 its value would double
the repulsive force and the momentum if mv x position = 10^-34 = constant
and m stays approximately constant.When two electrons have opposite spins
the force would be attractive (in analogy to electric charges of opposite sign attracting each other).

No. Think about a simple two electrons atom. If the electrons have different quantum numbers, there is no force of this nature between them. Surely, your force would have been observed in atoms a long time ago!

Regards

Pat
 
There is a post on sci.physics.research where someone asked if a force could be the explanation instead of the antisymmetrical wavefunction.I was wondering if
anyone had ever tried in the past to use a force type explanation.
 
Rothiemurchus said:
There is a post on sci.physics.research where someone asked if a force could be the explanation instead of the antisymmetrical wavefunction.I was wondering if
anyone had ever tried in the past to use a force type explanation.

I understand what you are saying. My point is that whenever something is introduced, one must make sure that it is in agreement with *all* known experimental observations. That's why it's so hard to introduce new theories :smile: .

As for your question, the first thing to check when introducing a new type of force between electrons is that it does not conflict with any of the experimental success of usual QM. Now, It's true that one could argue for a very short range force so that it could maybe act only extreme condition such as white dwarves and neutron stars, but I still think it would be hard to not conflict with the extremely precise measurements of helium type atoms, which agree so far with QED. (But I might be wrong.)


Of course, other problesm pop up when you start thinking more seriously about this idea. For example, what would explain the Table of elements if there is no Pauli principle? (could this force explain the pattern of the elements and at the same time yields the standard results of QED for helium, etc?) It's hard to imagine.

Regards

Pat
 
I agree with you but it would be nice to have a force and not a principle!
 
In the relation:
uncertainty in momentum x uncertainty in position = constant

are the uncertainties average uncertainties - is the right hand side of the equation an absolute or average value?
 
I think there is no new force involved, even though that would be great and exciting news !
You can take a look at :
R. F. Streater and A. S. Wightman's PCT, Spin and Statistics, and All That, reprinted by Addison-Wesley, New York, 1989
or check : http://math.ucr.edu/home/baez/spin.stat.html by John Baez.
 
Last edited by a moderator:

Similar threads

Back
Top