Changing values of R in a RLC series circuit

Twoism
Messages
17
Reaction score
0

Homework Statement


A television channel is assigned the frequency range from 54 MHz to 60 MHz. A series RLC tuning circuit in a TV receiver resonates in the middle of this frequency range. The circuit uses a 16 pF capacitor. Inductor is .487 micro Henries.
In order to function properly, the current throughout the frequency range must be at least 50% of the current at the resonance frequency. What is the minimum possible value of the circuit's resistance?

Homework Equations


I=V/Z
Z=sqrt(R^2+(omegaL-(omegaC)^-1)^2)
omega=2pi(frequency)

The Attempt at a Solution


I'm kinda lost on this one.
I tried setting .5(V/Z1)=(V/Z2) and solving for R.
Z1 is using the 57MHz and Z2 is using 54 or 60 MHz, neither gave me a correct answer.

I meant to put "finding a value" instead of "changing values of," sorry.
 
Physics news on Phys.org
It seems like your set up is correct. What is the expression you get for \frac{| Z_1 |}{| Z_2 |}?

Though it doesn't seem like you need the info I wrote up below, it might be worth checking out:

Your expression for the magnitude of the impedance of the circuit is correct, but is more instructive written in this way:

| Z(w) | = \sqrt{ R^2 + ( \frac{ ( \frac{\omega}{\omega_o} )^2 - 1 }{ \omega C })^2 }

Where \omega_o = \frac{1}{\sqrt{LC}} , or the angular frequency at which | Z | is a minimum. Notice is only depends on L and C, not R. This is correspondingly the frequency of maximum current.

When you plug in the values for L and C, you find that the resonant frequency (\frac{\omega_o}{2 \pi} ) is very close to 57 MHz, right in the middle of the range given in the problem.

Your task is to find the value R such that the ratios of the currents at the edge of the frequency range are at least 50% of the current at the resonant frequency. Hope this helps.
 
Last edited:
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top