Complicated implicit differentiation

cal.queen92
Messages
43
Reaction score
0

Homework Statement



If (sqrt x) + (sqrt y) = 11 and f(9)=64 ---> find f '(9) by implicit differentiation



The Attempt at a Solution



I keep getting lost in my work here...

first, taking derivative of both sides:

d/dx ((sqrt x) + (sqrt y)) = d/dx (11)

obtaining: (1/2)(x)^(-1/2) + (1/2)(y)^(-1/2) * dy/dx = 0

Now, I want to keep y positive so:

(1/2)(y)^(-1/2) * dy/dx = -(1/2)(x)^(-1/2)

So if I solve for dy/dx:

dy/dx = (-1/(sqrt x)) / (1/(sqrt y)) which means: dy/dx = (-1/(sqrt x) * ((sqrt y)/1)

giving: dy/dx = -(sqrt y)/ (sqrt x) as the derivative.

However, I don't know how to use the other information provided! I am very stuck... If anyone has any ideas, thanks!
 
Physics news on Phys.org
cal.queen92 said:

Homework Statement



If (sqrt x) + (sqrt y) = 11 and f(9)=64 ---> find f '(9) by implicit differentiation



The Attempt at a Solution



I keep getting lost in my work here...

first, taking derivative of both sides:

d/dx ((sqrt x) + (sqrt y)) = d/dx (11)

obtaining: (1/2)(x)^(-1/2) + (1/2)(y)^(-1/2) * dy/dx = 0

Now, I want to keep y positive so:

(1/2)(y)^(-1/2) * dy/dx = -(1/2)(x)^(-1/2)

So if I solve for dy/dx:

dy/dx = (-1/(sqrt x)) / (1/(sqrt y)) which means: dy/dx = (-1/(sqrt x) * ((sqrt y)/1)

giving: dy/dx = -(sqrt y)/ (sqrt x) as the derivative.

However, I don't know how to use the other information provided! I am very stuck... If anyone has any ideas, thanks!

Your derivative is correct. The information you didn't use is f(9)=64. Here f is the implicit function defined by the equation x1/2 + y1/2 = 11.

f(9) = 64 means that the point (9, 64) is on the graph of the implicit function. What you're supposed to do to finish this problem is to find dy/dx when x = 9 and y = 64.
 
I see! That's great! so then that gives an answer of -8/3. Perfect! Thank you.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top