Is it true that you are never actually touching something?

  • Thread starter Thread starter physicsnoob12
  • Start date Start date
physicsnoob12
Messages
15
Reaction score
0
is it true that you are never actually touching something? i keep hearing that this is true but why is it that we can feel the texture of things?
 
Physics news on Phys.org
This depends entirely on the definition of "actually touching something". Probably also "you", since the outermost layer of skin is dead. But this will end up being an argument about semantics, not science.
 
i think the point is that two pieces of matter never touch - the force you feel is the electrostatic repulsion from the charges in the material
 
But there is also the fact that chemical bonds form between the two objects touching. If they are connected, how can one say they are not touching? And we're right back arguing about semantics.
 
NobodySpecial said:
i think the point is that two pieces of matter never touch - the force you feel is the electrostatic repulsion from the charges in the material

And that's why I called Mr. Capra a crackpot the other day.

https://www.physicsforums.com/showthread.php?t=455290

There was a mention of that in his http://video.google.com/videoplay?docid=9107401959308808776#" .

53:40 thru 58:+

I'm a layman, and like to think about everything too much.

But really, I know nothing.
 
Last edited by a moderator:
physicsnoob12 said:
is it true that you are never actually touching something? i keep hearing that this is true but why is it that we can feel the texture of things?

The summed answer to your question is:

At the atomic level, physical objects do not have clear, hard boundaries. Physical objects are made of atoms, which contain electrons, which have repulsive forces.

It is these forces that interact when physical objects come into contact with each other.

We can feel texture because texture is a macroscopic property of objects, far, far larger in scale than the individual atoms.


Think of this: say I'm standing in a forest, at night, wearing a pair of boxing gloves. OK, sure I can't touch small things, such as grass or pine needles, but would I be able to feel my way through the forest that's filled with foot thick trees? Of couse I can. Think of trees as the "texture" of the forest. As long as the texture is much bigger than my boxing gloves, I'll be fine.
 
Vanadium 50 said:
But there is also the fact that chemical bonds form between the two objects touching. If they are connected, how can one say they are not touching? And we're right back arguing about semantics.

Chemical bonds are the constant exchange of photons between charged particles. And I think this is what OP is getting at. But I do agree with you about the semantics. Like The matrix! Touch is really just a cascade of photons between electrons in your body. So can you really touch something? for sure, it's exactly what you just described.

You might mean, do two things touch in the naive sense, that they are contiguous? As far as physics knows, interaction only takes place when two objects are "local"... that is, an electron and a photon only interact when their world lines intersect. Do two electron's ever interact... no... it has never been observed, only the interaction between photons and electrons has been observed, Hence the QED vertex.
 
jfy4 said:
Chemical bonds are the constant exchange of photons between charged particles.
This is not true.
 
DaveC426913 said:
This is not true.

Please tell me what really happens then... Because I was under the strong impression that it was...
 
  • #10
What have been said may cover what happens in our daily life, but what happens when a neutron finds its way in the nucleus and causes nuclear fission or in the high energy collisions at particle accelerators. Do we have particles in contact then?
 
  • #11
physicsnoob12 said:
is it true that you are never actually touching something? i keep hearing that this is true but why is it that we can feel the texture of things?



http://www.worsleyschool.net/science/files/touch/touch.html




but why is it that we can feel the texture of things?


The repulsion is taking place between 'somethings' that are a matter of interpretation (aka personal opinion and/or belief). There are a few subtle differences between matter and force, but in this particular situation you are justified to think approximately of the 'touching' of macro surfaces as interactions of force fields.
 
  • #12
DaveC426913 said:
At the atomic level, physical objects do not have clear, hard boundaries.


Then they are not 'physical' and qm is not physics per se, but a statistical mathematical tool.
 
  • #13
jfy4 said:
Please tell me what really happens then... Because I was under the strong impression that it was...

I thought the same way also...
 
  • #14
Well yes and no obviously. Touch is a biological sensation it has pretty much nothing to do with physics which is about something beyond biological concerns. Essentially this isn't a physics question it's merely a question of psychology and biology.

Nothing touches in physics either, it just influences another field or particle. The term touch is entirely inappropriate to any science but biology.
 
  • #15
Calrik said:
Well yes and no obviously. Touch is a biological sensation it has pretty much nothing to do with physics which is about something beyond biological concerns. Essentially this isn't a physics question it's merely a question of psychology and biology.

Nothing touches in physics either, it just influences another field or particle. The term touch is entirely inappropriate to any science but biology.

His question is equally applicable if he were asking how a ruler could touch a rock. No biology involved.
 
  • #16
jfy4 said:
Please tell me what really happens then... Because I was under the strong impression that it was...

The electromagnetic force is mediated by photons. That says nothing at all about chemical bonding, because electrons on two atoms near each other (as well as within the atoms) will exchange photons and experience repulsion completely regardless of whether or not they're bonding. Knowing that the electromagnetic force is mediated by photons does nothing to explain chemical bonding. You don't even remotely need QED to explain chemical bonding; a 'classical' Coulomb gauge with instantaneous attraction/repulsion works fine.

Saying that chemical bonding is because of electromagnetic repulsion/attraction is like saying a turbulent vortex in a stream forms because water has viscosity. It's an inherently dynamical effect. On top of that, electrostatic forces are not sufficient to explain chemical bonding or any electronic properties, even when you take into account dynamics, since the Pauli principle and exchange energy plays a quite important role.

I am certain that nowhere, jfy4's imagination, has a chemical bond ever been defined as "the constant exchange of photons between charged particles". It's a ridiculous remark that says absolutely nothing other than "electrons repel". In what ways would "electrons repel" describe what a chemical bond is? And more relevantly, in what way does it explain why some atoms will form a bond, and others do not. They all have electrons around them, don't they? So why will two neutral hydrogen atoms form a bond, but not two neutral helium atoms? Explain yourself, jfy4.
 
  • #17
alxm said:
I am certain that nowhere, jfy4's imagination, has a chemical bond ever been defined as "the constant exchange of photons between charged particles". It's a ridiculous remark that says absolutely nothing other than "electrons repel"
...
Explain yourself, jfy4.

Let's just dial back the aggression please. There are ways of disagreeing and correcting without having to get insulting.
 
  • #18
alxm said:
The electromagnetic force is mediated by photons. That says nothing at all about chemical bonding, because electrons on two atoms near each other (as well as within the atoms) will exchange photons and experience repulsion completely regardless of whether or not they're bonding.

Aren't chemical bonds an electromagnetic phenomena? Doesn't it have to due with how electrons in the outer shells of the atoms interact? The only way I know of two electrons interacting is through the exchange of virtual photons, but maybe I am missing something...
 
  • #19
DaveC426913 said:
His question is equally applicable if he were asking how a ruler could touch a rock. No biology involved.

Exactly, but then he did not ask that; define the experiment before you can expect the results, no?

We cannot use macroscopic descriptions to describe nanoscopic phenomena to do so means abandoning any limits to reason and of course the laws of physics as we currently understand them.

"If a tree falls in the woods and no one is around to hear it what colour is it?"

Monkey Island 4.
 
Last edited:
  • #20
Calrik said:
Exactly, but then he did not ask that
He did. He asked about touching. A ruler can touch a rock. This a general case of touching. In the absence of specificity, any answer that can apply is valid.

But an answer that attempts to exclude valid answers because it imposes its own assumption is not a valid answer, such as your introduction of a narrow definition of 'touching' as being a limited to the senses.

Calrik said:
"If a tree falls in the woods and no one is around to hear it what colour is it?"
Attempts to claim that there's no logic here won't work. We won't fall for this kind of verbal smoke and mirrors. :-p
 
  • #21
DaveC426913 said:
He did. He asked about touching. A ruler can touch a rock. This a general case of touching. In the absence of specificity, any answer that can apply is valid.

But an answer that attempts to exclude valid answers because it imposes its own assumption is not a valid answer, such as your introduction of a narrow definition of 'touching' as being a limited to the senses.Attempts to claim that there's no logic here won't work. We won't fall for this kind of verbal smoke and mirrors. :-p

Ok your not getting the point not sure if that is my problem or yours. Basically to ask a pertinent question you need to ask a pertinent question about something that is defined or at least knowable experimentally.

I'm not getting into an argument here just being specific.

I never said there was no logic just that there is no point in asking a question without logic.

A ruler can touch a rock, but can it touch god? :-p
 
  • #22
Calrik said:
Ok your not getting the point not sure if that is my problem or yours. Basically to ask a pertinent question you need to ask a pertinent question about something that is defined or at least knowable experimentally.
His question makes perfect sense as-is. I don't see where you're missing it.

Certainly, there are interesting facets to the question, such as yours, but the central question is simply:

Is it true that two things are never really touching?

That question can be answered independently of all the facets.
 
  • #23
DaveC426913 said:
His question makes perfect sense as-is. I don't see where you're missing it.

Certainly, there are interesting facets to the question, such as yours, but the central question is simply:

Is it true that two things are never really touching?

That question can be answered independently of all the facets.

Ok then we are agreed his question needed to be refined but if you take it at face value it doesn't. Doesn't mean something didn't need to be said about it though. :smile:

physicsnoob12 said:
is it true that you are never actually touching something? i keep hearing that this is true but why is it that we can feel the texture of things?
I disagree the question made any sense you don't. So?

Of course you are never touching something if touch isn't an issue, the response is therefore implied.
 
  • #24
cbetanco said:
Aren't chemical bonds an electromagnetic phenomena? Doesn't it have to due with how electrons in the outer shells of the atoms interact? The only way I know of two electrons interacting is through the exchange of virtual photons, but maybe I am missing something...

Exactly. My knowledge on the subject of bonds is that they are entirely electromagnetic in nature, and as far as physicists know, the electromagnetic interaction is entirely mediated by photons... Hence, I'm glad we are on the same page.

As for others who have objected, please teach me! if it is not that way, i'd love to here a more correct view.
 
  • #25
Maybe the only place where stuff touches other stuff is at the center of a black hole .
 
  • #26
Nick666 said:
Maybe the only place where stuff touches other stuff is at the center of a black hole .
Neutron star - the lightweight little brother of a BH - where the force is enough to crush the electrons and the protons together till they're all just neutrons shoulder-to-shoulder.
 
  • #27
jfy4 said:
As for others who have objected, please teach me! if it is not that way, i'd love to here a more correct view.

I realize I do not actually have an answer. I too am hoping an expert in the field will weigh in.
 
  • #28
DaveC426913 said:
I realize I do not actually have an answer. I too am hoping an expert in the field will weigh in.

Unless there was some sort of logical inconsistency in my statement from before, how could you have known I was incorrect then...?

I am open to learning new information. But QED is is fairly clear in its explanation of electromagnetic phenomena. To be frank, I do not believe to be wrong in this matter, unless I can see a clear explanation of how bonds work besides the explanation I have provided. I was trying to help OP, not lead him astray.
 
  • #29
jfy4 said:
I am open to learning new information. But QED is is fairly clear in its explanation of electromagnetic phenomena. To be frank, I do not believe to be wrong in this matter,

I am certainly willing to be corrected. Can you show a reference where it says that chemical bonds are the constant exchange of photons between charged particles.

Are these virtual photons?
 
  • #30
DaveC426913 said:
I am certainly willing to be corrected. Can you show a reference where it says that chemical bonds are the constant exchange of photons between charged particles.

Are these virtual photons?

I'm not even sure anyone needs to be corrected, I don't think I have been shown wrong. Yes, I mean virtual photons. And yes, a quick internet search will show that electromagnetic phenomena of any kind (including chemical bonds) are mediated by photons (virtual and radiative).

With your "go-ahead" I will consider my response concerning chemical bonds still ok. Thank you for your dialogue.
 
  • #31
jfy4 said:
I'm not even sure anyone needs to be corrected,
I do.

If I am to accept that chemical bonds are mediated by an exchange of photons, I need to see it explicitly. I went searching but could find nowhere that said that.
 
  • #32
alxm said:
The electromagnetic force is mediated by photons. That says nothing at all about chemical bonding, because electrons on two atoms near each other (as well as within the atoms) will exchange photons and experience repulsion completely regardless of whether or not they're bonding. Knowing that the electromagnetic force is mediated by photons does nothing to explain chemical bonding. You don't even remotely need QED to explain chemical bonding; a 'classical' Coulomb gauge with instantaneous attraction/repulsion works fine.

Saying that chemical bonding is because of electromagnetic repulsion/attraction is like saying a turbulent vortex in a stream forms because water has viscosity. It's an inherently dynamical effect. On top of that, electrostatic forces are not sufficient to explain chemical bonding or any electronic properties, even when you take into account dynamics, since the Pauli principle and exchange energy plays a quite important role.

I am certain that nowhere, jfy4's imagination, has a chemical bond ever been defined as "the constant exchange of photons between charged particles". It's a ridiculous remark that says absolutely nothing other than "electrons repel". In what ways would "electrons repel" describe what a chemical bond is? And more relevantly, in what way does it explain why some atoms will form a bond, and others do not. They all have electrons around them, don't they? So why will two neutral hydrogen atoms form a bond, but not two neutral helium atoms? Explain yourself, jfy4.

Fair enough, You can explain bonds with classical e&m. But, QED is The fundamental mechanics for e&m, not classical, and as such, classical e&m is completely contained in QED. Hence, you can never go wrong by using the correct method in describing a phenomenon, even when a more naive approach will suffice...

As far as how bonds work in a more qualitative manner, you can ask any chemist and they will tell you that the fundamental importance in bonding atoms and molecules is the relationship between charges of atoms and the electrodynamics of the system. Which, fortunately, is completely explained by QED, and the pivot of QED is the QED vertex, which is the emission, and absorption of photons. I hope this helps put you at ease about how bonds work and the importance of fundamental physics in other areas of science.
 
  • #33
jfy4 said:
Fair enough, You can explain bonds with classical e&m. But, QED is The fundamental mechanics for e&m, not classical, and as such, classical e&m is completely contained in QED. Hence, you can never go wrong by using the correct method in describing a phenomenon, even when a more naive approach will suffice...

As far as how bonds work in a more qualitative manner, you can ask any chemist and they will tell you that the fundamental importance in bonding atoms and molecules is the relationship between charges of atoms and the electrodynamics of the system. Which, fortunately, is completely explained by QED, and the pivot of QED is the QED vertex, which is the emission, and absorption of photons. I hope this helps put you at ease about how bonds work and the importance of fundamental physics in other areas of science.

I completely agree. I study particle physics, and ALL electromagnetic at their most basic level are mediated by the exchange of virtual photons (now if virtual photons actually exist is another question for debate). Although the dance the electrons in one atom do with electrons in other atoms is quite complicated (and to be exact, they also interact with the quarks inside the protons and neutrons of the nucleus, but those effects can be ignored, and must be ignored since our present computing power can't really take this into account), each "step" in the dance these electrons do is just an exchange of virtual photons. Like jfy4 said, just because one doesn't have to evoke QED to explain bonding, doesn't mean that QED doesn't explain bonding, it does. An obvious analogy would be that although Newtonian mechanics fully explains the motion of most everyday objects, special relativity is a more accurate theory in describing the fundamental motion of things like billard balls, projectiles, orbital mechanics. It's just much more a pain in the *** to use special relativity over Newtonian mechanics in these cases since you don't really gain an appreciable level of accuracy in you measurements of the motions. So... just because chemists can use classical E&M (with some aspects of QM) to explain chemical bonding, doesn't mean the real phenomena isn't explained by QED, it is just much more a pain in the *** to use QED over chemistry to explain chemical bonds (especially since we can't even do most of the calculations!). Hope this kinda makes sense.

Sorry if my response is a little verbose.
 
  • #34
physicsnoob12 said:
is it true that you are never actually touching something?
Not quite. At the level at which "you are never actually touching something" there's no 'you'.

physicsnoob12 said:
i keep hearing that this is true but why is it that we can feel the texture of things?
Because at the level at which "we can feel the texture of things" there is a 'you'('we'), and that 'you'('we') is properly described as "actually touching something".
 
  • #35
People cannot touch.

Hello,

I am not a physicist. I am an electronic engineer. I found out that people cannot actually touch anything from this link http://www.worsleyschool.net/science/files/touch/touch.html. There is just an electromagnetic repulsive force when we touch a subject. But I need more "scientific" paper to read about this topic. Did you any document explain this phenomenon?

Thanks
Suad
 
  • #36


adba said:
Hello,

I am not a physicist. I am an electronic engineer. I found out that people cannot actually touch anything from this link http://www.worsleyschool.net/science/files/touch/touch.html. There is just an electromagnetic repulsive force when we touch a subject. But I need more "scientific" paper to read about this topic. Did you any document explain this phenomenon?

Thanks
Suad
It depends on how you define "touching" at the molecular level.

So this is really a ridiculous question.

What's touching?

Nothing touches nothing in universe if you take the question from a daily; practical perspective.
 
  • #37


sokrates said:
It depends on how you define "touching" at the molecular level.

So this is really a ridiculous question.

What's touching?

Nothing touches nothing in universe if you take the question from a daily; practical perspective.

There is no ridiculous question but there are ridiculous answers. Because the person who asks a question doesn't naturally know what it is.

Touching involves the contact meaning in my question. If you glance at the link which I wrote in the question text, you will see.

If an atom has a border which the outer electrons constitute (I am not sure that). When an everyday life touch (or contact) occurs, the atoms repel each others without exceeding the border of others.

If this case is true, I just need another a bit serious document about it.
 
  • #38


adba said:
There is no ridiculous question but there are ridiculous answers. Because the person who asks a question doesn't naturally know what it is.

Touching involves the contact meaning in my question. If you glance at the link which I wrote in the question text, you will see.

If an atom has a border which the outer electrons constitute (I am not sure that). When an everyday life touch (or contact) occurs, the atoms repel each others without exceeding the border of others.

But this isn't that well-defined either. In many instances, one forms "bonds", and this can easily be beyond the "diameter" of the outer orbital. Now, do you consider this to be "touching"?

Things may look easy when viewed from a naive perspective. It isn't that trivial if you dig a little bit more into it. The fact that definite spatial boundary of something at the quantum level isn't something that can be clearly specified requires that anyone asking such a question makes a clear definition what these criteria such as "touch" mean.

Zz.
 
  • #39
Vanadium 50 said:
But this will end up being an argument about semantics, not science.

Did I call it or what?
 
  • #40


ZapperZ said:
But this isn't that well-defined either. In many instances, one forms "bonds", and this can easily be beyond the "diameter" of the outer orbital. Now, do you consider this to be "touching"?

Things may look easy when viewed from a naive perspective. It isn't that trivial if you dig a little bit more into it. The fact that definite spatial boundary of something at the quantum level isn't something that can be clearly specified requires that anyone asking such a question makes a clear definition what these criteria such as "touch" mean.

Zz.

Ok. I understand (from a naive perspective) that I cannot get an answer because I could not explain "touch" meaning. Actually you are right I have to ask well-defined questions. I gave up.

Thanks
 
  • #41
I found it

I found the question. It is a good starting point for me. Because I have not been able to ask the right question up to now. so I could not get the answer. But now, I found it.

I am asking my question.

Assume two matters (matter A and matter B) have a distance between each other.

First Case: When the distance is one meter. The electrons of matter A repels the electrons of matter B and vice versa, even tough we cannot sense or measure this repellency.

Second Case: When the distance is so close as two matter contact each other (Let's say that matter A pushes matter B for any reason). The electrons of matter A repels the electrons of matter B and vice versa, we can sense and measure this repellency.

The question is this: Is there any difference between two "repellency" force except their quantities?
 
  • #42


adba said:
First Case: When the distance is one meter. The electrons of matter A repels the electrons of matter B and vice versa, even tough we cannot sense or measure this repellency.

Second Case: When the distance is so close as two matter contact each other (Let's say that matter A pushes matter B for any reason). The electrons of matter A repels the electrons of matter B and vice versa, we can sense and measure this repellency.

The question is this: Is there any difference between two "repellency" force except their quantities?

The residual force between electrons bound in two different atoms or molecules consists of two terms:
(i) the attractive van der Waals force, which decays with distance like 1/r^7, hence is immeasurable at the distance of 1m but noticeable as friction at close to contact distance. (It is attractive although the electrons carry the same negative charge since it also contains the effects of the positive charge of the nucleus.)
(ii) the repulsive (approximate hard core) force, which decays with distance like 1/r^11 (or so), hence is immeasurable already at distances just beyond contact but gets very strong at contact distance, and ensures that solid matter cannot penetrate other solid matter.
(The same holds for fluid matter - liquids and gas, but there the molecules are so weakly held together that the matter simply gives way to the contact motion.)
 
  • #43
Vanadium 50 said:
But there is also the fact that chemical bonds form between the two objects touching. If they are connected, how can one say they are not touching? And we're right back arguing about semantics.

Yes, it is highly semantic. However, it also depends on how you visualize an atomic bond. It's not quite like the molecular model kits you buy at the campus store, where a plastic stick connects and "touches" the two plastic atom models together. They are attracted to get close together, but never too close, as the protons in their nuclei repel each other. The electron doesn't touch the proton of its own atom nor of other atoms, and why this is the case is not quite understood (as far as I know anyway). We could get really semantic with the word "connected," in that they are connected but not touching, It's not like there's a rope tying the two together. They are simply atoms floating around surrounded by empty space, moving closer to but never touching other atoms, no matter how attracted they are (except perhaps at the CERN particle smasher or something).


So to draw a simple diagram answering the touchy* question:

||

Let the distance between those two lines equal say, a billionth of an inch (choosing a random but tiny distance here). Let that be the hypothetical closest distance ones hand can make it to, say, the keyboard I type on. How am I pressing the keys If I'm still that far away from them? Surely I would have to actually REACH the keys in order to press them, some may say. Theres another way of looking at it though. My hands are both on the keyboard now. As I push to move closer, the key moves away to enter sentences at my command.

How do I feel the keys, or any other object for that matter? Well, objects have different characteristics at the chemical level, such as temperature for instance. Energy from this the cup of coffee a billionth of an inch away from my hand is transferring heat to the atoms of my hand, which stimulate the nerves that tell me my hand is warm. With texture, some atoms may be a billionth of an inch away and others perhaps only a millionth of an inch, and our bodies pick up on these differences. Static electricity is also picked up by our senses.

Even when you push REALLY hard, say I squeeze my coffee cup to the point where it breaks and spills hot coffee all over me. Thats me getting closer and closer to the molecules making up the cup, with my hand losing a bit of strength from all the effort it takes to get closer, until the molecules in the cup finally put enough of their energy into repelling away from the molecules in my hand and the glass cracks and breaks away from my hand. Hot coffee spills all over my hand, and there's so much heat that the energy transfer excites the proteins in the dermis and epidermis of my skin to burn me.

Don't want to go too deep into it but that's the way I look at it.
 
  • #44
zketrouble said:
Yes, it is highly semantic. However, it also depends on how you visualize an atomic bond. It's not quite like the molecular model kits you buy at the campus store, where a plastic stick connects and "touches" the two plastic atom models together. They are attracted to get close together, but never too close, as the protons in their nuclei repel each other. The electron doesn't touch the proton of its own atom nor of other atoms, and why this is the case is not quite understood (as far as I know anyway).

One cannot view the electrons as little balls moving inside a molecule and somehow avoiding falling into a nucleus - the nuclei would attract little charged balls until they fall into them. The electrons are rather like a fluid surrounding the nuclei and making up the spatial extent of the atom. Chemists draw the shape of these fluid clouds (more precisely, the electron density) as orbitals. Electrons show up as particles only under particular circumstances; e.g., in detectors such as Geiger counters.
 
  • #45
A. Neumaier said:
One cannot view the electrons as little balls moving inside a molecule and somehow avoiding falling into a nucleus - the nuclei would attract little charged balls until they fall into them. The electrons are rather like a fluid surrounding the nuclei and making up the spatial extent of the atom. Chemists draw the shape of these fluid clouds (more precisely, the electron density) as orbitals. Electrons show up as particles only under particular circumstances; e.g., in detectors such as Geiger counters.

I understand this. But if the electrons keep moving closer and closer to the nucleus due to the attraction between positive proton and negative electron, the atom would be unstable and would simply collapse. Why this doesn't happen is not known as far as I know (though there may be a proven reason or highly accepted theories that I'm unaware of).

Now this gets into further semantics. Only a tiny portion of an atom is actually MATTER, most of it is empty space between these electron orbitals and the proton/neutron nucleus. If a valence electron is orbiting in a covalent bond between, say, O2, it's moving around the empty space portion of the atom. Is this considering "touching" ? ? ? I don't consider it to be. But, it all depends on how we want to define the terms we use in English. Yes it is part of the atom that the electron his traveling through, but it is not touching anything but empty space within at atom. Quite the paradox, but it's not touching anything in general.

Of course, photons have bounced into electrons causing both the photon and the electron to sharply change its direction. This leads to the debate of whether a photon is a particle or a wave, but let's just assume that wave-particle duality is true based on the wave-like and particle-like nature of the photon. Thus it isn't to say that it is not POSSIBLE for two pieces of matter to touch each other, for the photon did touch the electron (unless perhaps there's some sort of undiscovered particle of a particle, smaller than quarks and fermions and all the other pieces at the quantum level that is having an effect on whether or not the electron and photon actually "touched"). It is possible for two pieces of matter to touch, but in general, they don't. So I think it is safe to say that we never touch something, even if "never" means we only touch the amount of matter equivalent to three electrons within a lifetime. Shoot, more semantics, now we have to define "never." Even if "never" isn't an acceptable word choice, the idea around this is that in general, we are not touching what we feel.
 
  • #46
zketrouble said:
I understand this. But if the electrons keep moving closer and closer to the nucleus due to the attraction between positive proton and negative electron, the atom would be unstable and would simply collapse. Why this doesn't happen is not known as far as I know (though there may be a proven reason or highly accepted theories that I'm unaware of).

What is wrong with "Quantum Mechanics"? I'm guessing that you've solved for, say, the hydrogen atom's wavefunction for you to not be ignorant of its existence. So what is the problem with the "explanation" given in such a description, and what we have already described in our FAQ thread?

You also need to consider that in all of this, you never offered a definition of the word "touch", and to consider that such a pedestrian usage of the word may not mean anything in this case.

Zz.
 
  • #47
zketrouble said:
I understand this. But if the electrons keep moving closer and closer to the nucleus due to the attraction between positive proton and negative electron, the atom would be unstable and would simply collapse. Why this doesn't happen is not known as far as I know (though there may be a proven reason or highly accepted theories that I'm unaware of).

There are no electron _particles_ moving around an atom - this is the old, insufficient Bohr model, so nothing that would collapse. It is very well understood why atoms are stable - the ground state is a stationary state that can live indefinitely (unless the nucleus decays).

zketrouble said:
Only a tiny portion of an atom is actually MATTER, most of it is empty space between these electron orbitals and the proton/neutron nucleus. If a valence electron is orbiting in a covalent bond between, say, O2, it's moving around the empty space portion of the atom. Is this considering "touching" ? ? ? I don't consider it to be.

There is no empty space around a nucleus, as in Bohr's superseded model. According to quantum electrodynamics, the space is filled by an electron _field_ around the nucleus which neutralizes its charge and fills the space defining the atom size. What is displayed by a field ion microscope http://en.wikipedia.org/wiki/Field_ion_microscope is the boundary of this field. But this boundary is not perfectly defined but a bit fuzzy, more like the surface of a piece of fur or of a cloud.

If two atoms or molecules touch, the volumes occupied by their electron fields touch, and repel each other, while at a slightly (but not much) larger distance there is a slight attraction, the van der Waals attraction, responsible for the formation of liquids.

Thus touching is real. The nuclei don't touch each other but the atoms and molecules do.

zketrouble said:
So I think it is safe to say that we never touch something [...] we are not touching what we feel.

Your conclusion is quite unsafe, since your intuition is based on the superseded atomic model of Bohr rather than on modern quantum field theory.
 
Last edited:
  • #48
Yep Van.50, you called it right on.
DC
 
  • #49
A. Neumaier said:
There are no electron _particles_ moving around an atom - this is the old, insufficient Bohr model, so nothing that would collapse. It is very well understood why atoms are stable - the ground state is a stationary state that can live indefinitely (unless the nucleus decays).



There is no empty space around a nucleus, as in Bohr's superseded model. According to quantum electrodynamics, the space is filled by an electron _field_ around the nucleus which neutralizes its charge and fills the space defining the atom size. What is displayed by a field ion microscope http://en.wikipedia.org/wiki/Field_ion_microscope is the boundary of this field. But this boundary is not perfectly defined but a bit fuzzy, more like the surface of a piece of fur or of a cloud.

If two atoms or molecules touch, the volumes occupied by their electron fields touch, and repel each other, while at a slightly (but not much) larger distance there is a slight attraction, the van der Waals attraction, responsible for the formation of liquids.

Thus touching is real. The nuclei don't touch each other but the atoms and molecules do.



Your conclusion is quite unsafe, since your intuition is based on the superseded atomic model of Bohr rather than on modern quantum field theory.


I can't say too much about quantum field theory and quantum mechanics because I just recently got interested in the subject. But these electron clouds are not really "clouds," they are just the space which an electron may or may not occupy at any given time. The electron itself can only be in one place at one time. I'm aware it doesn't revolve around the nucleus like the planetary model but in fact in a quantum, wavelike fashion as suggested by de Broglie. The matter of the electron can only be in one place at a time, and it moves around as waves. However, look at the mass/size of the protons, neutrons, and electrons and compare that to the atom. The electrons aren't filling all the space around the nucleus, they are moving around there.

As for the volumes of the electron fields touching, most of this is empty space, and two electrons won't touch each other because they repel each other. They are traveling all around each other, in each others electron clouds, but are any two pieces of matter ever coming into full contact?

The nucleus of an atom makes up only a tiny fraction of the entire atom. The electrons make up an even smaller portion. How is it possible that there is no empty space within the atom? If the nucleus makes up 1/(insert large number) of the atom, and the electrons make up another 1/(insert larger number) of the atoms mass, how is it possible for these fractions to add up to equal 1? There is a large field where the electron(s) of an atom may be at any given time, but that doesn't mean that they are there nor that they are making full "touching" contact with other nearby electrons.

If I'm totally missing something here please do fill me in.
 
  • #50
Vanadium 50 said:
Did I call it or what?

Yep, you called it. I smelled it coming also, and despite efforts to avoid it I've been entangled with it.
 
Back
Top