estro
- 239
- 0
Given the matrix:
\left( \begin{array}{cc}<br /> 1 & 2 \\<br /> 2 & 4 \end{array} \right)
I'll find eigenspace for the eigenvalue of t=0, So I have to solve:
\left( \begin{array}{cc}<br /> 1 & 2 \\<br /> 2 & 4 \end{array} \right) {(x,y)}^t=0
Then I do R_2->R_2-2R_1 and get x+2y=0 => x=-2y => get the eigenvector (-1,2).
But wolframalpha tells me the eigenvector for this eigenvalue should be (1,2).
Where is my sin?
\left( \begin{array}{cc}<br /> 1 & 2 \\<br /> 2 & 4 \end{array} \right)
I'll find eigenspace for the eigenvalue of t=0, So I have to solve:
\left( \begin{array}{cc}<br /> 1 & 2 \\<br /> 2 & 4 \end{array} \right) {(x,y)}^t=0
Then I do R_2->R_2-2R_1 and get x+2y=0 => x=-2y => get the eigenvector (-1,2).
But wolframalpha tells me the eigenvector for this eigenvalue should be (1,2).
Where is my sin?
Last edited: