A tractable Baker-Campbell-Hausdorff formula

  • Thread starter Thread starter arkobose
  • Start date Start date
  • Tags Tags
    Formula
arkobose
Messages
4
Reaction score
0
1. Let A and B be two matrices, and \lambda be a continuous parameter.
2. Now, define a function f(\lambda) \equiv e^{\lambda A}e^{\lambda B}. We need to show that \frac{df}{d\lambda} = \left\{A + B + \frac{\lambda}{1!}[A, B] + \frac{\lambda^2}{2!}[A, [A, B]] + ... \right \}f

Once this is shown, setting \lambda = 1, and [A, [A, B]] = [B, [A, B]] = 0 gives us a Baker-Campbell-Hausdorff formula.


3. I had shown this result quite a while ago, but now I have forgotten completely what I had done. This time, I tried differentiating f(\lambda) w.r.t the argument, and then using the commutation was able to get the first two terms on the R.H.S., but thereafter I got stuck. The very minimal hint would be all that I need.

Thank you!
 
Last edited:
Physics news on Phys.org
Without seeing your exact steps I can't say much, but you may need to expand out an exponential or two and work out some commutators term-by-term.
 
I solved it. Thanks anyway!
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top