Question about momentum space fourier transform

Identity
Messages
151
Reaction score
0
The form of the Fourier transform I love the most (because it is very symmetric) is:

f(x) = \int_{-\infty}^\infty g(\xi)e^{2\pi i x \xi}\,d\xi
g(\xi) = \int_{-\infty}^\infty f(x)e^{-2\pi i x \xi}\,dx

If we take \xi = p then we get:

f(x) = \int_{-\infty}^\infty g(p)e^{2\pi i x p}dp = \frac{1}{2\pi}\int_{-\infty}^\infty g(p) e^{ixp}\,dp (rescaling p in the second equality)
g(p) = \int_{-\infty}^\infty f(x)e^{-2\pi i x p}dx=\frac{1}{2\pi}\int_{-\infty}^\infty f(x) e^{-ixp}\,dx (rescaling x in the second equality)

However, in numerous references I see that:

f(x) = \frac{1}{\sqrt{2\pi \hbar}}\int_{-\infty}^\infty g(p)e^\frac{ixp}{\hbar}\,dp
g(p) = \frac{1}{\sqrt{2\pi \hbar}}\int_{-\infty}^\infty f(x)e^\frac{-ixp}{\hbar}\,dx

Why does the reduced Planck's constant come into it at all, and why do we have a square root?
 
Physics news on Phys.org
You can't have xp in an exponential, the argument of the exponent must be unitless. So it's really xk, not xp, where k is the "wave number." It is related to p by p=hbar*k, so that's how the hbar gets in there. The square root is just an arbitrary way to normalize the Fourier transform such that it has the same form as its inverse, and apply the transform and then its inverse needs to get you back to the original function.
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top