Thank you for that very nice summary:
Fredrik said:
They are comparing two different schools of thought:
- A state vector represents the properties of the system.
- A state vector represents the statistical properties of an ensemble of identically prepared systems, and does not also represent the properties of a single system.
It seems this is an important step right away. We need to understand what they have in mind by the "properties of a system" versus the "statistical properties of an ensemble." What if the "properties of a system" are nothing but statistical tendencies? In that case, I cannot see how any logical argument or experimental test could ever distinguish #1 and #2. So they must be arguing that if "properties" and "statistical tendencies defined by ensembles"
are the same thing, then we should still reject the ensemble interpretation! I'm immediately skeptical they could pull that off without some subtle circularity in their argument, but let's see how they proceed.
Suppose that there's a theory that's at least as good as QM, in which a mathematical object λ represents all the properties of the system. Suppose that a system has been subjected to one of two different preparation procedures, that are inequivalent in the sense that they are associated with two different state vectors. Suppose that these state vectors are neither equal nor orthogonal. The preparation procedure will have left the system with some set of properties λ. If view 1 is correct, then the state vector is determined by λ, i.e. if you could know λ, you would also know the state vector. Suppose that view 2 is correct. Then either of the two inequivalent preparation procedures could have given the system the properties represented by λ.[/color] Yada-yada-yada. Contradiction!
Yeah, no way does that brown statement make any sense to me either. It sounds to me like they have
assumed that there exists some theory that has the properties they would like quantum mechanics to have-- a one-to-one association between real properties of a single system that statistically determine experimental outcomes on that system and states in the theory. Then they ask, is quantum mechanics that theory? Then they conclude, quantum mechanics must be that theory,
assuming such a theory exists and QM is true. That's circular-- if they assume the truth has property A, and they assume quantum mechanics is true, then they can prove that quantum mechanics must have property A--
regardless of what property A actually asserts.
We can expose the circularity with counterexamples.
Counterexample #1: Let's assume that real systems don't actually have "properties", but rather that properties are a mode of analysis used by our intelligence to try and understand them. Then we cannot even get past the first assumption in their logic.
Counterexample #2: Let's assume that systems really do have "properties", but no theory exists in which some mathematical object can represent all the properties of an individual system. That is, the universe is fundamentally property-oriented, but is not fundamentally mathematical, so there is no one-to-one correspondence between any mathematical object and all the "properties" that system possesses.
Again, we cannot even get past their first assumption. But let's give them a pass on these two points, because they do say "given only very mild assumptions." Personally, I don't find either of those two assumptions to be "mild", I expect them
both to be
wrong (as a skeptic), but let's see if there are any other objections if we do buy off on those assumptions.
Counterexample #3: The universe is property-based, and is mathematical, so there does exist some mathematical object that represents all of the properties of a single system. However, the only "properties" that a system has is its statistical tendencies, like the "properties" of the dice in a craps game. Here we run afoul of a third assumption in the authors' logic, that possibility #1 and possibility #2 must be
disjoint-- such that for possibility #2 to be true, possibility #1 must be false. In this counterexample, we find a case where both #1 and #2 can be true since they are indistinguishable, leaving the issue up to the preference of the physicist. Indeed, if the universe really were such that the only "properties" that any system has are its statistical tendencies, then any mathematical object that represents those properties is going to look a heck of a lot like an ensemble interpretation, because "statistical tendencies" require an ensemble picture to have meaning--
even if we choose to associate it with properties of a single system. In my view, in such a situation, the entire dispute between possibility #1 and possibility #2 becomes moot, but that does not adjudicate the question in favor of possibility #1.
So where does that leave us? The logic of their argument only holds if we make two assumptions about our reality:
1) systems have properties that determine their statistical behavior (we can't say their complete behavior or we are doing hidden-variables approaches like deBroglie-Bohm)
2) these properties can be represented completely by some mathematical object.
Then it follows immediately that the QM state must be that mathematical object
if it makes all the correct predictions about that statistical behavior, since that is the meaning of "represent completely". Framed like this, I'd say their argument suffers from two flaws:
1) its "mild assumptions" are not mild at all, they are at the heart of what we wonder about our reality and its relation to quantum mechanics, and
2) it is circular, as the italicized part shows. If we assume QM is the correct theory, and we make other assumptions that force the correct theory to be a theory of properties of individual systems, then sure enough, QM must be a theory of the properties of individual systems. This tells me nothing of what I want to know about how to interpret quantum mechanics, but can be viewed as a clear way to lay out the assumptions required for quantum mechanics to be interpreted as a complete theory about the properties of individual systems.
However, they go on to talk about experimental ways to distinguish their possibilities #1 and #2, and I haven't read that through yet. So maybe there is something more going on than the way
Fredrik and I have framed their argument, this is just my initial reaction.