I want to know more about series convergence (elementary)

AI Thread Summary
The discussion centers on the convergence of series, particularly the divergence of the series 1/n and the integral 1/x compared to the convergence of 1/n². The user expresses confusion over why 1/x diverges while 1/x² converges, despite understanding the integral test. An intuitive proof is provided to illustrate the divergence of 1/n, showing that it can be compared to a series that clearly diverges. The conversation emphasizes the need to become accustomed to these concepts, even if they are not immediately intuitive. Understanding the behavior of functions as they approach zero on an infinite plane is crucial for grasping these convergence principles.
1MileCrash
Messages
1,338
Reaction score
41
I am able to use a variety of methods to check to see if a series converges, and I can do it well. However, it's not something I feel like I've intuitively conquered.

I don't understand why the series 1/x diverges. I mean, I do, in that I know the integral test will give me the limit as x -> infinity of ln|x| which grows without bound, and I understand why the integral test makes sense, but I don't get it.

Why does it matter how quickly the function approaches 0 on an infinite plane?

Is there really an infinite area under the curve 1/x, but a finite one under 1/x^2? Why? What's so different about the two?

Does someone understand my concern? Is there some link between 1/x being the "standard" for whether or not a series converges and the behavior of ln x (increases extremely slowly?)
 
Mathematics news on Phys.org
I think I understand your concern. But I'm afraid there is no easy answer. You find it not intuitively true that the series 1/n diverges but 1/n2 does not. I don't think I can explain to you why, except to say that they do.

However, I can give you an intuitive proof why 1/n converges:

1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8} +\frac{1}{9}+\frac{1}{10}+...

\geq 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8} +\frac{1}{16}+\frac{1}{16}+...

\geq 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + ...

So this shows why our series diverges. We can even use this to find how fast the series diverges.

Likewise, one can indeed show that 1/x has infinite area and 1/x2 has finite area.

I know it isn't intuitive, but it's something you need to get used to.
 
Last edited:
Have you come across formal methods for convergence involving norms or are you in the early stages of your degree?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top