Niles said:
So you are telling me that the FSR in wavelength-space is not constant? I don't understand how that can be possible. When I say a cavity has a FSR of e.g. 300 MHz, it means the cavity modes are spaced by 300 MHz regardless of the frequency of the modes. So the spacing between mode m and m+1 is 300 MHz.
Now say I want to find the spacing between mode m and m+1 in wavelength. What do I do? Say I know that m is at X GHz and m+1 at Y GHz.
If \displaystyle\frac{\Delta\nu}{\nu} is relatively small (and this implies that m is relatively large.), then \displaystyle\frac{\Delta\nu}{\nu}\approx\frac{ \Delta\lambda}{\lambda}\,. And in this case the wavelengths of successive modes are separated by a nearly constant amount.
Take your example of a cavity with FSR (Free Spectral Range) = 300 MHz:
For m = 1, 2, 3, 4; the frequencies are 300, 600, 900, and 1200 MHz, respectively. I.e. they're multiples of 1, 2, 3, 4 time the fundamental cavity frequency. However, the wavelength of the fundamental is 0.9993 meters ≈ 1 m . The wavelengths for m = 1, 2, 3, 4; are 1 m, 0.5 m, 0.3333 m, 0.250 m . These are nowhere near being equally spaced.
However, consider m = 998, 999, 1000, 1001, 1002; The wavelengths for these modes are 1.0013 mm, 1.0003 mm, 0.9993 mm, 0,9983 mm, and 0.9973 mm. Looking at the difference in wavelength from one mode to the next we find 1.0023×10-3 mm, 1.0003×10-3 mm, 0.9983×10-3 mm, 0.99631×10-3 mm.
The spacing changes by about 0.2% per mode when m is near 1000.