Why is cos 90 Degrees Equal to 0?

  • Thread starter Thread starter Bin Qasim
  • Start date Start date
  • Tags Tags
    Cos
AI Thread Summary
Cosine of 90 degrees equals zero because, on the unit circle, the point of intersection at this angle is located at (0, r), where r is the radius. The cosine function is defined as the x-coordinate divided by the radius, resulting in cos(90 degrees) = 0/r = 0. This understanding shifts the focus from right triangles to the broader definition of cosine as a function of rotation on the coordinate plane. The discussion emphasizes that sine and cosine can be defined for any angle, not just those between 0 and 90 degrees. Thus, the relationship between cosine and the unit circle clarifies why cos(90 degrees) is zero.
Bin Qasim
why cos 90 is 0??

Hello everyone

got one question here... why cos 0 is 0?

cos of any angle is adjescent by hypotenuse. so what is adjescent in case of 90 degree angle??

is the question clear? please reply ASAP...pls

thanx in advance...
 
Mathematics news on Phys.org
A better definition of cosine is that of a simple period. Given a point on the unit circle, and a radial line segment making an angle t with the positive x-axis, the x-coordinate of the point of intersection is cos(t). The y-coordinate is sin(t). From this visualization, many theorems should be immediately apparent.

PS. Also, sin(0) is 0. cos(0) is 1, as you can see from the circle.
 
Yes, as hypermorphism stated, the definitions of cosine and sine are not really about right trianges: they're about rotation. Now, you know that the argument of sin and cos are angles, correct (for your purposes, of course)? That is, they take in an angle and spit out a "regular" value.

Now, imagine that you have a coordinate plane. You construct that angle you want at the origin and draw a ray that comes out of it. At some point, it will intersect a circle with an arbitrary radius r. Now, imagine that you take that point, and find its coordinates. Call them (x,y). Sine is defined to be the y coordinate divided by the radius of the circle, and cosine is defined to be the x coordinate divided by the radius. (See the attached picture for clarification). What does that mean for us? Since we can draw an angle of any size we want, sin and cos can be defined for any angle, not just the angles between 0 and 90 degrees! We can find the sine of, -10 degrees, 270 degrees, whatever: it doesn't matter.

Anyway, you might be wondering, "So, how does this apply to what I though cos was, adjacent over hypotenuse?" Take a closer look at the picture I drew. Imagine that you were only considering the angles in the first quadrant, i.e., when they are between 0 and 90 degrees. Cosine would be defined to be x/r. However, if you think about it, every coordinate on the plane can have a line dropped down from it, to the x-axis. This forms a right triangle, with legs of length x and y and hypotenuse of length r. Can you see where I'm going with this? The leg closest to the angle, the "adjacent" one, has length x. The hypotenuse has length r. Therefore, adjacent/hypotenuse = x/r.

Now, back to your original question. From the picture provided, it's obvious that the ray drawn at 90 degrees intersects the circle on the y-axis. Therefore, the coordinates of the intersection point are (0,r) (where r is the radius of the circle again). Thus, x=0, and cos(90 degrees) = x/r = 0/r = 0.
 

Attachments

  • graph.GIF
    graph.GIF
    4.2 KB · Views: 2,994
Thank You

Thank you mates... :smile:
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top