Partial Derivative of atan(xy/(1+x^2+y^2)^0.5)

MrWarlock616
Messages
160
Reaction score
3

Homework Statement



Prove that if ##z=\arctan(\frac{xy}{\sqrt(1+x^2+y^2)})## , then:

##\frac{\partial^2 z}{\partial x \partial y}=\frac{1}{(1+x^2+y^2)^\frac{3}{2}} ##

Homework Equations



##\frac{d}{d x} (\arctan(x)) = \frac{1}{1+x^2}##

The Attempt at a Solution



Differentiating z partially w.r.t y, I got:

## \frac{\partial z}{\partial y} = \frac{x^3+x}{(1+x^2+y^2)^\frac{3}{2} (1+x^2+y^2+x^2y^2)} ##

I'm pretty sure my working till here is correct. But differentiating again w.r.t x would be disastrous. Help me please. :)
 
Physics news on Phys.org
Hi MrWarlock616! :smile:

You can cancel a (1 + x2), top-and-bottom :wink:
 
EDIT: -nvm got it-
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top