I decided to draw some spacetime diagrams to illustrate this scenario. We start with diagrams for the Inertial Reference Frame (IRF) of someone stopped on the road like a radar cop who is shown as a thick black line with dots every second of the cop's time. I am using scales such that the speed of light (and radar signals) is 1 to make it easy to do calculations. This makes the radar signals travel along lines on a 45 degree diagonal.
You are shown in going to the right at one half the speed of light. You should be able to confirm that for every two seconds of Coordinate Time, you travel one light-second of Coordinate Distance. But since you are traveling at such a high speed, time for you is dilated by the factor gamma which is 1.1547 at 0.5c and your one-second blue dots are spaced farther apart than the coordinate time. The dots always show the Proper Time for each observer and are only the same as the Coordinate Time if the observer is not moving in the IRF. In that case the observer's path will be shown as a vertical line.
Coming towards you from the right is a green car also traveling at -0.5c and with one-second green dots spaced farther apart, just like yours.
In this first diagram, the cop is using radar signals shown in red to measure your speed:
The cop sends two red radar signals and receives two echoes. The first signal is sent at Coordinate Time of -6 and received at -2. (Remember, since the cop is not moving, the Proper Time on his clock matches the Coordinate Time.) From this data, the cop can conclude that halfway between these two points, at his Proper Time of -4, your distance was one-half of the difference between his two Proper Times which is (-2+6)/2 = 4/2 = 2 light-secs. You can see that at Coordinate Time -4, your distance from the cop was 2 light-secs.
The second red radar signal is sent at the cop's Proper Time -3 and received at -1. So applying the same process we conclude that at Coordinate Time -2, your distance was (-1+3)/2 = 2/2 = 1 light-sec which you can also confirm.
Now to determine your speed, the cop has to take the difference between your two distances that he measured and divide it by the difference in the two times that he placed those measurements at. This calculates as (2-1)/(-4+2) = 1/-2 = -0.5c. This means that the cop measures that you are coming towards him at 0.5c.
Now we look at how you in the blue car can do the same thing with your radar gun aimed at the cop as depicted in this diagram:
Since you are traveling with respect to the Coordinate Time, you need to use your own Proper Time as indicated by the blue dots. If you follow what the cop did with his Proper Time, you can see that your measurement is exactly the same as what the cop did and you will conclude that the cop is moving towards you at 0.5c.
However, if you look at the diagram, the distances don't appear to be correct as depicted on the drawing. But you can't tell that, all you can tell is what the data from your measurements tell you.
But if use the Lorentz Transformation process to create a new diagram for an IRF in which you are stationary, we can see how the distances would come out consistent with your measurements. Since you are traveling to the right at 0.5c we use an IRF that is traveling to the left of the first one at -0.5. This is what we get:
Now it is easy to see that the distances you measured match the Coordinate Distances but remember, you can't tell the difference as all your observations are dependent on radar signals traveling at c.