henpen
- 50
- 0
My question is relatively breif: is it true that
\displaystyle \lim_{n \rightarrow \infty}(\varphi(n))=\lim_{n \rightarrow \infty}(n) \cdot \prod_{i=1}^{\infty}(1-\frac{1}{p_i})
Where p is prime? Pehaps \varphi(n) is too discontinuous to take the limit of, but it would seem that as it increases to infinity the function should tend to infinity, with fewer anomalies.
If this were true,
\displaystyle \zeta(1)=\frac{1}{ \prod_{i=1}^{\infty}(1-\frac{1}{p_i})}=\frac{1}{\lim_{n \rightarrow \infty}(\frac{\varphi(n)}{n})}=\lim_{n \rightarrow \infty}(\frac{n}{\varphi(n)})
\displaystyle \lim_{n \rightarrow \infty}(\varphi(n))=\lim_{n \rightarrow \infty}(n) \cdot \prod_{i=1}^{\infty}(1-\frac{1}{p_i})
Where p is prime? Pehaps \varphi(n) is too discontinuous to take the limit of, but it would seem that as it increases to infinity the function should tend to infinity, with fewer anomalies.
If this were true,
\displaystyle \zeta(1)=\frac{1}{ \prod_{i=1}^{\infty}(1-\frac{1}{p_i})}=\frac{1}{\lim_{n \rightarrow \infty}(\frac{\varphi(n)}{n})}=\lim_{n \rightarrow \infty}(\frac{n}{\varphi(n)})