Very specific question about index notation

mindarson
Messages
64
Reaction score
0
I am reading through this text

http://www.ita.uni-heidelberg.de/~dullemond/lectures/tensor/tensor.pdf

and am having a bit of trouble with one of the arguments that is put in index notation. Specifically, equation (3.3). I was wondering if anyone could have a look at it and clear up a confusion for me.

I understand the argument, i.e. that the 'old definition' (eqn (3.2) in the text) of the inner product is not invariant under coordinate transformation in general, which is why we need covectors, covariant components, etc.

My specific question is about how the index notation is used in eqn (3.3). The authors write that

s' = <a',b'> = Aμ αaαAμ βbβ = (AT)μ αAμ βaαbβ (3.3)

They then argue that this shows that only if A-1 = AT (so the 2 matrices together equal δβα) (i.e. only if the transformation is orthonormal) will the inner product actually come out to the same value that it had in the untransformed coordinate system.

My question is how to express the inverse and transpose of a matrix in index notation. Where did the transpose come from in the 3rd equality, and why did the indices on it not change position at all? How is the relationship between a matrix, its transpose, and its inverse expressed in index notation? How, exactly, do the authors read off from (3.3) the fact that A-1 must equal AT?

I do understand that, to complete the argument, we ultimately need α = β, but how does one get, in practice, from 2 matrices to the Kronecker delta? What would the multiplication of a matrix by its inverse to get the Kronecker delta actually look like when written out?

I understand the argument, but I need clarification on how the argument is being expressed specifically using index notation.

Thanks for any help you can give!
 
Physics news on Phys.org
This author is being very careless. Eq 3.3 is invalid, since it has two μ's upstairs. It should be written

Aμα aα Aμβ bβ

The transpose of a tensor is obtained the same way as the transpose of a matrix - by interchanging rows and columns. So Aμα = (AT)αμ. Thus we have

(AT)αμ Aμβ aα bβ

The inverse of Aμβ is defined as the tensor (A-1)αμ such that

(A-1)αμ Aμβ = δβα

and thus comparing the last two eqs we have (AT)αμ = (A-1)αμ
 
  • Like
Likes etotheipi and mindarson
Hi Bill, it's valid as he didn't assume that <mu> upstairs differs from <mu> downstairs. Actually he uses the metric as the unit matrix, so he's free to place the indices wherever he wants. It's like special relativity with x4=ict.
 
Are you sure? He does draw a distinction between co- and contravariant indices. In fact he says earlier

To make further distinction between contravariant and covariant vectors we will put the contravariant indices (i.e. the indices of contravariant vectors) as superscript and the covariant indices (i.e. the indices of covariant vectors) with subscripts
 
Then you're right and the notes are badly written.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...

Similar threads

Back
Top