lugita15 said:
You won't get a contradiction if you work in SI units.
You won't get a contradiction in any set of units, that isn't what consistency is about.
In the SI system there are two ways to write the SI unit with dimensions ML/T^2. Specifically, N or kg m/s^2. The conversion factor between them is 1, so SI is consistent.
In customary units you can write the units with the same dimensionality as lbf or lb ft/s^2. The conversion factor between them is .031, so customary units are inconsistent. You can still do calculations in customary units just fine, but you cannot just simplify the units without doing the conversions.
So, the question that D H is posing is essentially, how do we know that lbf has dimensions of ML/T^2?
Newtons original formulation would have been closer to f=kma, where k is a fundamental constant of nature with dimensions of FT^2/ML and F is considered to be a fundamentally different unit dimension than ML/T^2. Now, we could make a standard F unit e.g. by making a standard spring and compressing it a standard amount, and we could use it to accelerate a known mass to measure k.
Eventually, as we got better and better at measuring mass and length and time, we would find that our ability to measure the k of the universe was limited by our ability to make springs reproducibly. In that case, we could simply set k to be some exact value and define our unit of force, not in terms of our standard spring, but in terms of our standard masses and accelerations. Once we do that we see that k is dimensionless, and by choosing units such that it is 1 we can write f=ma.
A similar thought process can be applied to any fundamental dimensionful constant. We can choose a system of units where it is not only equal to 1 but is dimensionless. Such units are called geometrized units. From the perspective of geometrized units the SI system is inconsistent since it requires you to use dimensionful universal constants in your equations.