Activity of photon during wavelegnth duration

  • Thread starter Thread starter acesuv
  • Start date Start date
  • Tags Tags
    Activity Photon
acesuv
Messages
63
Reaction score
0
(disregard my improvised science lingo)

so like... a radio wave has a rather macroscopic wavelength. the photon is depicted as traveling back and forth in unison with the wavelength. I am having trouble understanding why the photon can't hit you from the "side". if the photon is traveling a zig-zaged path (zig zags due to wavelength), then is it possible for the photon to actually hit you from the "side"? if you get hit by a radiowave when its coming back down from its wavelength, it has some velocity in a direction which the light isn't actually travelling. I am thinking uncertainty principals somehow negate this? please help thanks
 
Physics news on Phys.org
acesuv said:
a radio wave has a rather macroscopic wavelength. the photon is depicted as traveling back and forth in unison with the wavelength.

No, it doesn't do that. Where have you seen this depicted?
 
jtbell said:
No, it doesn't do that. Where have you seen this depicted?

im not sure. i did a google image search and couldn't find any depictions of such, which discourages me.

thanks
 
The sinusoidal "pictures" that you usually see of electromagnetic waves are supposed to represent the behavior of classical electric and magnetic fields. They show the magnitude and direction of those fields at various points, at various times, not the motion of actual objects.

The relationship between classical electric and magnetic fields on one hand, and quantum-electrodynamical photons on the other hand, is rather complex and subtle. Unless you know QED well, it's dangerous to try to connect the two.

The safest way is via energy: classical electric and magnetic fields carry energy. A volume of space "filled" with electromagnetic radiation contains a certain amount of energy E, which we can calculate from classical electrodynamics in terms of the amplitudes of the electric and magnetic fields. Looking at this in terms of photons, each photon has energy hf. So if the radiation has a single frequency, then we can say the average number of photons in that volume is N = E / hf.
 
  • Like
Likes 1 person
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Back
Top