Note that in vector notation, we have, from (i):
\nabla{u}=\frac{\partial{u}}{\partial{x}}\vec{i}+\frac{\partial{u}}{\partial{y}}\vec{j}=\frac{\partial{u}}{\partial{r}}\vec{i}_{r}+\frac{\partial{u}}{r\partial\theta}\vec{i}_{\theta}
when the polar unit vectors are:
\vec{i}_{r}=\cos\theta\vec{i}+\sin\theta\vec{j},\vec{i}_{\theta}=\frac{\partial}{\partial\theta}\vec{i}_{r}=-\sin\theta\vec{i}+\cos\theta\vec{j}
Thus, the gradient operator has the form, in polar coordinates:
\nabla=\vec{i}_{r}\frac{\partial}{\partial{r}}+\vec{i}_{\theta}\frac{\partial}{r\partial\theta}
In agreement thus far?