What Are the Solutions for These Two Differential Equations?

Orion1
Messages
961
Reaction score
3
Find an equation of the tangent line to the curve:
xe^y + ye^x = 1
at the point:
P(0,1)

Find the values for \lambda for which:
y = e^{\lambda x}

satisfies the equation:
y + y' = y''


I have been assigned these two problems, which are not covered for another 3 chapters.

I am uncertain how to solve problem 1.

This is my first attempt at problem 2, uncertain if this is correct.
e^{\lambda x} + e^{\lambda x} \lambda = e^{\lambda x} \lambda^2
 
Physics news on Phys.org
Orion1 said:
Find an equation of the tangent line to the curve:
xe^y + ye^x = 1
at the point:
P(0,1)

Differentiate implicitly throughout the expression. You can do that right? You know, when you do so for:

xe^y[/itex]<br /> <br /> you get<br /> xe^y(dy)+e^y(dx)<br /> <br /> Right? Now do the rest, then solve for the quotient dy/dx.<br /> <br /> <blockquote data-attributes="" data-quote="" data-source="" class="bbCodeBlock bbCodeBlock--expandable bbCodeBlock--quote js-expandWatch"> <div class="bbCodeBlock-content"> <div class="bbCodeBlock-expandContent js-expandContent "> Find the values for \lambda for which:<br /> y = e^{\lambda x}<br /> <br /> satisfies the equation:<br /> y + y&amp;#039; = y&amp;#039;&amp;#039;<br /> <br /> This is my first attempt at problem 2, uncertain if this is correct.<br /> e^{\lambda x} + e^{\lambda x} \lambda = e^{\lambda x} \lambda^2 </div> </div> </blockquote><br /> Looks good. You can figure out what lambda is right?
 
The theorem of implicit functions solves the first problem.

Daniel.
 
Implicit Function Theorem...



The correct application of the Implicit Function Theorem:

\frac{dy}{dx} = - \frac{F_x}{F_y} = - \frac{e^y + ye^x}{xe^y + e^x}

Solution 1:
\boxed{\frac{dy}{dx} = - \frac{e^y + ye^x}{xe^y + e^x}}

Solution 2:
y = e^{\lambda x} \; \; y + y&#039; = y&#039;&#039;
e^{\lambda x} + e^{\lambda x} \lambda = e^{\lambda x} \lambda^2
e^{\lambda x} (1 + \lambda) = e^{\lambda x} \lambda^2
(1 + \lambda) = \lambda^2
\lambda^2 - \lambda = 1
\lambda^2 - \lambda - 1 = 0
\lambda = \frac{1 \pm \sqrt{(-1)^2 - 4(1)(-1)}}{2(1)} = \frac{1 \pm \sqrt{5}}{2}
\boxed{\lambda = \frac{1 \pm \sqrt{5}}{2}}
 
Last edited:
Nope

\frac{dy}{dx}=-\frac{e^{y}+ye^{x}}{xe^{y}+e^{x}}

computed at the point (0,1) gives the slope -e-1.

Daniel.
 

Slope formula:
(y - 1) = (-e - 1)(x - 0)

Solution 1:
\boxed{y(x) = -x(e + 1) + 1}
 
Last edited:
Back
Top