Here is my take on it: "Relativity" was first proposed by Gallileo! Well, Gallilean relativity, anyway. He argued that if you were enclosed in a carriage moving in a straight line at a constant speed, there was no experiment you could do that would tell you your speed, or even if you were moving. Essentially that's "F= ma". We can feel forces but forces are proportional to acceleration, not speed. Speed has to be "relative" to some outside reference. Of course, Gallileo didn't know anything about magnetic-electric forces.
Maxwell's equations show that the force exerted by a moving electron is proportional to its speed not acceleration! Based on that, we should be able to do some kind of electro-magnetic experiment inside a "closed carriage" and so arrive at an "absolute" speed, not relative to the ground outside that has no bearing on our experiment.
That was exactly what the Michaelson-Morley experiment was designed to do: an electro-magnetic (light) experiment inside a "closed carriage" (the earth) to find our "absolute" speed. The experiment gave a null result- even with an electro-magnetic experiment, you can't find an "absolute" speed.
It was Lorentz who suggested that perhaps the motion of the electrons produced exactly enough "pull" that the arms of the scale in the direction of motion were contracted exactly enough to give the null result. That's a lovely theory! That's exactly the kind of subtle interaction we often see. Lorentz, purely ad-hoc, calculated how much the arm must have contracted.
Here's one way to see that: imagine a man who can swim at speed c, in still water, swimming in a river with current v. If he swims a distance d1, downstream, he moves (relative to the shore) at speed c+ v and takes time d1/(c+v) to do that. He then turns and swims the same distance up stream. Now his speed is c- v (notice that v must be less than c in order for to be able to do this) and so he takes time d1/(c-v). His total time for the round trip is
\frac{d_1}{c+v}+ \frac{d_1}{c-v}=
\frac{2cd_1}{c^2- v^2}
Now, he turns and swims a distance d2 across the river and back.
In order to be able to swim directly across the river, he must "angle" up stream. If he swims at an angle to the current with speed c and the current is still v, it's comparatively easy to calculate that his "speed made good" through the water is \sqrt{c^2- v^2} (draw the right triangle of vector speeds and use the Pythagorean Theorem). The time to go a distance d2 across the river and back is \frac{2d_2}{c^2- v^2}.
Finally: Suppose the two times are the same? What relation does d1 have with d2? You guessed it: the Lorentz Contraction formula.
A later experiment, called, I think, the "Kennedy experiment", showed that Lorentz's basic idea- that the electrons in the physical arm of the experiment cause the contraction was wrong- but the contraction formula, based on experimental results, was still valid. Einstein was among those who argued that it must be space itself which contracts, not just physical objects.