I have been thinking about this problem:
Determine whether the following series are convergent in \left(C[0,1],||\cdot ||_{\infty}\right) and \left(C[0,1],||\cdot ||_{1}\right).
when
f_n(t)=\frac{t^n}{n}
In the supremum norm, this seems pretty straightforward, but in the integral norm I am...