- #1

- 3

- 0

Let V be the space of polynomials of degree 3 or less over [tex]\Re[/tex]. For every [tex]\lambda\in\Re[/tex] the evaluation at [tex]\lambda[/tex] is the map ev[tex]_{\lambda}[/tex] such that V [tex]\rightarrow[/tex] [tex]\Re[/tex] is linear. How do we find the coefficients of ev[tex]_{2}[/tex] in the basis dual to [tex]\{1,x,x^2,x^3\}[/tex]?

Last edited: