Geodesic Definition and 245 Threads
-
A Minimal property of Spacelike geodesics in GR/curved spacetime?
Notation: The flat spacetime metric ##\eta_\mu\nu = \text{diag}(1,-1,-1,-1)##. Thus, the proper time element for a timelike path is ##ds##, and the proper distance element for a spacelike path is ##\sqrt{-ds^2}##. It is well known that ##\int ds## is stationary if and only if the path of...- Kostik
- Thread
- General relativity Geodesic
- Replies: 76
- Forum: Special and General Relativity
-
I Why do objects follow a geodesic?
Gravity is considered as a bending of spacetime due to massive objects. And hence other objects around the curvature follow a geodesic path. My question is, why do they follow the path? Can't they be stationary? What's the cause behind objects even moving in the first place? I sometimes hear the...- Zayan
- Thread
- Geodesic Gravity Motion
- Replies: 7
- Forum: Special and General Relativity
-
T
Problem with dimensionless quantities in an equation requiring M^2 (Super Hamiltonian Formulation for Geodesic Motion)
I've worked my way through this exercise but I am a bit puzzled by the last line "What do the choices ##\mathcal H = -½, 0, -½\mu^2, +½ ## mean for the geodesic and the choice of parameterisation?" I've worked to produce: ##\big (\frac {dr}{d\lambda} \big ) ^2 = E^2 - \big (1- \frac {2M}{r^2}...- TerryW
- Thread
- equations Geodesic
- Replies: 35
- Forum: Advanced Physics Homework Help
-
I Macroscopic objects in free-fall
Hi, very basic question. Take an object like a rock or the Earth itself. If we consider their internal constituents, there will be electromagnetic forces acting between them (Newton's 3th law pairs). From a global perspective if the rock is free from external non-gravitational forces, then it...- cianfa72
- Thread
- Electromagetic field Geodesic Spacetime curvature Spacetime metric
- Replies: 31
- Forum: Special and General Relativity
-
M
Geodesic on a sphere and on a plane in 2D
I start with the 2D plane. Suppose y(x) is the curve that connects these two points. Its length is given by: $$S=\int_1^2 \, ds=\int_1^2 (1+y'^2)^{\frac {1}{2}} \, dx$$ Applying Euler's equation we get:$$\frac {\partial f} {\partial y'}=A$$$$\dfrac {y'}{(1+y'^2)^{\frac {1}{2}}}=A$$...- MatinSAR
- Thread
- Calculus of variation Curvature Geodesic
- Replies: 13
- Forum: Calculus and Beyond Homework Help
-
H
I Is momentum conserved as a body falls through a gravitational field?
If one stands on a large planetary body, like the moon, and throws a large object, like a rock straight up, the object will leave with some velocity, slow down to a stop, and then come back down with the same velocity once it returns to its origin. In Newtonian mechanics, the understanding is...- Herbascious J
- Thread
- Geodesic Gravitational Momentum
- Replies: 35
- Forum: Special and General Relativity
-
F
Timelike geodesic curves for two-dimensional metric
Using EL equation, $$L=\left(\frac{t^2}{\alpha}\dot{x}^2-\frac{c^2t^2}{\alpha}\dot{t}^2\right)^{0.5} \Longrightarrow \mathrm{constant} =\left(\dot{x}^2 -c^2 \dot{t}^2\right)^{-0.5} \left(\frac{t^2}{\alpha}\right)^{0.5} \dot{x}$$. Get another equation from the metric: $$ds^2=-\frac{c^2t^2}\alpha...- Fisherlam
- Thread
- Curves Geodesic
- Replies: 2
- Forum: Advanced Physics Homework Help
-
I Geodesic path in 2 dimensions?
The object takes a step [x, y] in 2 dimensional space. This is represented the change in coordinate ##x \vec e_x + y \vec e_y## where ##e_x## and ##e_y## are basis vectors in this space. Suppose we define a non-linear / parametric transformation of this ##\vec e_x## and ##\vec e_y## basis...- James1238765
- Thread
- Dimensions Geodesic Path
- Replies: 25
- Forum: General Math
-
G
I Geodesic in Weak Field Limit: Introducing Einstein's Relativity
I'm reading《Introducing Einstein's Relativity_ A Deeper Understanding Ed 2》on page 180,it says: since we are interested in the Newtonian limit,we restrict our attention to the spatial part of the geodesic equation,i.e.when a=##\alpha####\quad ##,and we obtain,by using...- GR191511
- Thread
- Field Geodesic Limit Weak
- Replies: 9
- Forum: Special and General Relativity
-
H
I Carroll GR: Geodesic Eq from Var Principles
On pages 106-107 of Spacetime & Geometry, Carroll derives the geodesic equation by extremizing the proper time functional. He writes: What I am unclear on is the step in 3.47. I understand that the four velocity is normalized to -1 for timelike paths, but if the value of f is fixed, how can we...- hawkdron496
- Thread
- Carroll General relativity Geodesic Geodesic equation Gr
- Replies: 13
- Forum: Special and General Relativity
-
Getting geodesic from variational principle
The metric is $$ds^2 = \frac{dr^2 + r^2 d\theta ^2}{r^2-a^2} - \frac{r^2 dr^2}{(r^2-a^2)^2}$$ I need to prove the geodesic is: $$a^2 (\frac{dr}{d \theta})^2 + a^2 r^2 = K r^4$$ My method was to variate the action ##\int\frac{(\frac{dr}{d\theta})^2 + r^2 }{r^2-a^2} - \frac{r^2...- LCSphysicist
- Thread
- Geodesic Principle Variational principle
- Replies: 2
- Forum: Advanced Physics Homework Help
-
A
I Physical meaning of a spacelike geodesic
I understand what is the physical meaning of a timelike geodesic, but what is the physical meaning of a spacelike geodesic?- accdd
- Thread
- Geodesic Physical
- Replies: 62
- Forum: Special and General Relativity
-
I Help Deriving Geodesic Equation from David Tong Notes
I was following David tongs notes on GR, right after deriving the Euler Lagrange equation, he jumps into writing the Lagrangian of a free particle and then applying the EL equation to it, he mentions curved spaces by specifying the infinitesimal distance between any two points, ##x^i##and ##x^i...- Hamiltonian
- Thread
- deriving Geodesic Geodesic equation
- Replies: 18
- Forum: Special and General Relativity
-
P
A Re-writing the geodesic deviation eqn in matrix notation (3d only)
This is my attempt to re-write the geodesic deviation equation in the special case of 3 dimensions and +++ signature in matrix notation. We start with assuming an orthonormal basis. Matrix notation allows one to express vectors as column vectors, and dual vectors as row vectors, but by...- pervect
- Thread
- deviation Geodesic Matrix Notation
- Replies: 0
- Forum: Special and General Relativity
-
Insights Geodesic Congruences in FRW, Schwarzschild and Kerr Spacetimes
Continue reading...- ergospherical
- Thread
- Geodesic Kerr Schwarzschild
- Replies: 8
- Forum: Special and General Relativity
-
A Geodesic Expansion: Finding the $\theta_{\pm}$ Factor
\begin{align*} \mathrm{\mathbf{(a)}} \quad U_{\pm} \cdot U_{\pm} &= \dfrac{1}{2} (n_a n^a \pm 2 n_a m^a + m_a m^a) = \pm n_a m^a = 0 \\ U_+ \cdot U_- &= \dfrac{1}{2} (n_a n^a - m_a m^a) = \dfrac{1}{2} (-1-1) = -1 \\ \\ \mathrm{\mathbf{(b)}} \quad P^a_b &= \delta^a_b + U_{\mp}^a (U_{\pm})_b +...- ergospherical
- Thread
- Expansion Geodesic
- Replies: 2
- Forum: Special and General Relativity
-
How to Derive Radial Geodesics in Kerr Metric?
The Kerr metric is given by \begin{align*} (ds)^2 &= -\left(1-\frac{2GMr}{\rho^2} \right)(dt)^2 - \frac{2GMar \sin^2 \theta}{\rho^2}(dt d\phi + d\phi dt) \\ &+ \frac{\rho^2}{\Delta}(dr)^2 + \rho^2 (d \theta)^2 + \frac{\sin^2 \theta}{\rho^2} \left[ \underbrace{(r^2+a^2)^2-a^2 \Delta \sin^2...- JD_PM
- Thread
- Geodesic Metric Radial
- Replies: 11
- Forum: Advanced Physics Homework Help
-
I
A Geodesic Eq Derived from Einstein Field Equations?
Since the EFE describes the shape of spacetime, it describes the way black holes, for example, evolve. Can one derive the geodesic equation from it in some limit ?- Intrastellar
- Thread
- Geodesic Geodesic equation
- Replies: 25
- Forum: Special and General Relativity
-
E
A Natural parametrization of a curve
Hello, I need the natural parametrization or a geodesic curve contained in the surface z=x^2+y^2, that goes through the origin, with x(s=0)=0, y(s=0)=0, dx/ds (s=0)=cos(a) and dy/ds(s=0)=sin(a), with "a" constant, expressed as a function of the arc length, i.e., I need r(s)=r(x(s),y(s)). Thank...- eva_92
- Thread
- Curve Geodesic Natural Parametrization
- Replies: 5
- Forum: Differential Geometry
-
I Parallel transport on flat space
When parallel transporting a vector along a straight line on flat space, does the connection (when calculating the covariant derivative) always equal zero? Do things change at all when using an arbitrary connection, rather than Christoffel symbols?- steve1763
- Thread
- Flat General relativity Geodesic Parallel Parallel transport Space Transport
- Replies: 11
- Forum: Differential Geometry
-
I Check for geodesically-followed path in a coordinate-free way
Hi, My question can result a bit odd. Consider flat spacetime. We know that inertial motions are defined by 'zero proper acceleration'. Suppose there exist just one free body in the context of SR flat spacetime (an accelerometer attached to it reads zero). We know that 'zero proper...- cianfa72
- Thread
- Accelerometer Geodesic Path Spacetime Special relativity
- Replies: 95
- Forum: Special and General Relativity
-
A Exists ? : Invariant geodesic equation
Does there exist a form of the geodesic equation which is invariant under coordinates change ?- jk22
- Thread
- Geodesic Geodesic equation Invariant
- Replies: 11
- Forum: Differential Geometry
-
A How to Read Geodesic Equation: Vector, 3-D & EFE Solutions
In the formula : ##\frac{d^2 x^\mu}{d\tau^2}=-\Gamma^\mu_{\alpha\beta}\frac{dx^\alpha}{d\tau}\frac{dx^\beta}{d\tau}## How is the ##x^\mu## understood : a 4-vector or the ##\mu##-st component simply ? If it is a vector, how to write it in spherical coordinate with extra time dimension ? Btw...- jk22
- Thread
- Geodesic Geodesic equation
- Replies: 11
- Forum: Special and General Relativity
-
I Solving Geodesic Eq.: Mysterious Conservation Eq. (Sec. 5.4 Carroll)
I'm still on section 5.4 of Carroll's book on Schwarzschild geodesics Carroll says "In addition, we always have another constant of the motion for geodesics: the geodesic equation (together with metric compatibility) implies that the quantity $$...- George Keeling
- Thread
- Conservation Geodesic Geodesic equation Sean carroll
- Replies: 4
- Forum: Special and General Relativity
-
I Understanding Killing Vectors & Schwarzschild Geodesics
I'm on to section 5.4 of Carroll's book on Schwarzschild geodesics and he says stuff in it which, I think, enlightens me on the use of Killing vectors. I had to go back to section 3.8 on Symmetries and Killing vectors. I now understand the following: A Killing vector satisfies $$...- George Keeling
- Thread
- Geodesic Killing vector Schwarzschild geometry Vectors
- Replies: 1
- Forum: Special and General Relativity
-
E
A Schwarzschild Metric Geodesic Eq: Qs & Answers
I have no idea if this is an “A” level question, but I will put that down. From the Schwarzschild metric, and with the help of the Maxima program, one of the geodesic equations is: (I will have to attach a pdf for the equations...) I believe this integrates to the following, with ...- exmarine
- Thread
- Geodesic Metric Schwarzschild Schwarzschild metric
- Replies: 15
- Forum: Special and General Relativity
-
J
I Deriving the 4-momentum of a free particle moving in curved spacetime
Consider a free particle with rest mass ##m## moving along a geodesic in some curved spacetime with metric ##g_{\mu\nu}##: $$S=-m\int d\tau=-m\int\Big(\frac{d\tau}{d\lambda}\Big)d\lambda=\int L\ d\lambda$$...- jcap
- Thread
- 4-momentum deriving Free particle Geodesic Lagrangian dynamics Particle Spacetime
- Replies: 2
- Forum: Special and General Relativity
-
W
A Doubt about Energy Condition in Wormhole: Integral Along Null Geodesic
I am now reading this paperhttps://arxiv.org/pdf/gr-qc/0405103.pdf, which is related to the energy condition in wormhole. Nevertheless, I got a problem in Eq.(6), which derives from so-called ANEC in Eq.(2): $$\int^{\lambda2}_{\lambda1}T_{ij}k^{i}k^{j}d\lambda$$ And I apply the worm hole space...- wLw
- Thread
- Doubt General relaivity Geodesic Integral Physics Tensor Wormhole
- Replies: 22
- Forum: Special and General Relativity
-
M
I Geodesics subject to a restriction
Hi, I'm trying to solve a differential geometry problem, and maybe someone can give me a hand, at least with the set up of it. There is a particle in a 3-dimensional manifold, and the problem is to find the trajectory with the smallest distance for a time interval ##\Delta t=t_{1}-t_{0}##...- MrTictac
- Thread
- Differential geometry Geodesic Geodesics Lagrangian
- Replies: 2
- Forum: Differential Geometry
-
I Lie derivative of hypersurface basis vectors along geodesic congruence
Hello PF, here’s the setup: we have a geodesic congruence (not necessarily hypersurface orthogonal), and two sets of coordinates. One set, ##x^\alpha##, is just any arbitrary set of coordinates. The other set, ##(\tau,y^a)##, is defined such that ##\tau## labels each hypersurface (and...- Pencilvester
- Thread
- Basis Basis vectors Derivative Geodesic Lie derivative Vectors
- Replies: 15
- Forum: Special and General Relativity
-
S
I Solving Geodesic Equations with Godel Metric
I have been working with the Godel metric (- + + + signature). I wanted to derive the geodesics for the metric, so I took to the geodesic equation: (d2xm/ds2) + Γmab(dxa/ds)(dxb/ds) = 0 In the case of the Godel metric, the geodesic equations that I was able to derive after deriving the...- space-time
- Thread
- Geodesic
- Replies: 4
- Forum: Special and General Relativity
-
P
I Using the derivative of a tangent vector to define a geodesic
I hope I'm asking this in the right place! I'm making my way through the tensors chapter of the Riley et al Math Methods book, and am being tripped up on their discussion of geodesics at the very end of the chapter. In deriving the equation for a geodesic, they basically look at the absolute...- physlosopher
- Thread
- Derivative Geodesic Tangent Tangent vector Vector
- Replies: 7
- Forum: Differential Geometry
-
I Question about a partial derivative
I apologise for the length of this question. It is probably possible to answer it by reading the first few lines. I fear I have made a childish error: I am working on the geodesic equation for the surface of a sphere. While doing so I come across the partial derivative \begin{align}...- George Keeling
- Thread
- Derivative Geodesic Partial Partial derivative Partial derivatives Sphere
- Replies: 7
- Forum: Differential Geometry
-
I Alternative form of geodesic equation for calculating Christoffels
From Thomas Moore A General Relativity Workbook I have the geodesic equation as, $$ 0=\frac{d}{d \tau} (g_{\alpha \beta} \frac{dx^\beta}{d \tau}) - \frac{1}{2} \partial_\alpha g_{\mu\nu} \frac{dx^\mu}{d \tau} \frac{dx^\nu}{d \tau} $$ as well as $$ 0= \frac{d^2x^\gamma}{d \tau^2} +...- Jason Bennett
- Thread
- Form General relativity Geodesic Geodesic equation
- Replies: 1
- Forum: Special and General Relativity
-
I What is the Strange Solution to the EFE with a Born Frame and Rotating System?
The Born frame field (see ref below) describes a rotating system and the proper acceleration ##\vec{a}=\nabla _{{{\vec {p}}_{0}}}\,{\vec {p}}_{0}={\frac {-\omega ^{2}\,r}{1-\omega ^{2}\,r^{2}}}\,{\vec {p}}_{2}##. If ##\omega## depends on coordinate ##r## then...- Mentz114
- Thread
- Circular Geodesic Strange
- Replies: 49
- Forum: Special and General Relativity
-
A
I Geodesics in 4D Spacetime: An Overview
The geodesic for 2-D, 3-D are straight lines. For a 4-D spacetime (x1,x2,x3,t) what would be it's geodesic.?? The tangent vector components are ##V^0=\frac{∂t}{∂λ} , V^i=\frac{∂x^i}{∂λ},i=1,2,3## & ##(\nabla_V V)^\mu=(V^\nu \nabla_\nu V)^\mu=0,(\nu,\mu=0,1,2,3)##- Apashanka
- Thread
- Geodesic Spacetime
- Replies: 9
- Forum: Special and General Relativity
-
A
I Covariant derivative of tangent vector for geodesic
For the simple case of a 2-D curve in polar coordinated (r,θ) parametrised by λ (length along the curve). At any λ the tangent vector components are V1=dr(λ)/dλ along ##\hat r## and V2=dθ(λ)/dλ along ##\hat θ##. The non-zero christoffel symbol are Γ122 and Γ212. From covariant derivative...- Apashanka
- Thread
- Covariant Covariant derivative Derivative Geodesic Tangent Tangent vector Vector
- Replies: 14
- Forum: Special and General Relativity
-
I Calculating Acceleration of Gravity w/ Geodesic Deviation: Troubleshooting
I have tried twice now to calculate acceleration of gravity using the general relativistic equation of geodesic deviation and both times my solution is twice the correct answer. What am I doing wrong? As an example here is one problem: Calculate the acceleration of gravity g at the earth’s...- Jim Hasty
- Thread
- Acceleration deviation General relaivity Geodesic Gravity Troubleshooting
- Replies: 22
- Forum: Special and General Relativity
-
R
Alternative form of geodesic equation
Homework Statement We are asked to show that: ## \frac{d^2x_\mu}{d\tau^2}= \frac{1}{2} \frac{dx^\nu}{d\tau} \frac{dx^{\rho}}{d\tau} \frac{\partial g_{\rho \nu}}{\partial x^{\mu}} ## ( please ignore the image in this section i cannot remove it for some reason ) Homework Equations The...- rohanlol7
- Thread
- Covariant Form General relaivity Geodesic Geodesic equation
- Replies: 3
- Forum: Advanced Physics Homework Help
-
A
I Why is √(gμνdxμdxν) the Lagrangian for Geodesic Eq?
From the invariance of space time interval the metric dΓ2=dt2-dx2-dy2-dz2 dΓ2=gμνdxμdxν dΓ=√(gμνvμvμ)dt dΓ=proper time. Can someone please help me in sort out why the term √(gμνdxμdxν) is taken as the Lagrangian,as geodesic equation is solved by taking this to be the Lagrangian.- Apashanka
- Thread
- Geodesic Geodesic equation Lagrangian
- Replies: 12
- Forum: Special and General Relativity
-
W
Find the curve with the shortest path on a surface (geodesic)
Homework Statement Let ##U## be a plane given by ##\frac{x^2}{2}-z=0## Find the curve with the shortest path on ##U## between the points ##A(-1,0,\frac{1}{2})## and ##B(1,1,\frac{1}{2})## I have a question regarding the answer we got in class. Homework Equations Euler-Lagrange ##L(y)=\int...- Westlife
- Thread
- Curve Euler lagrange equation Geodesic Path Surface
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
J
B Geodesic dome parametric formula
I've been researching for the calculus behind geodesic domes, and specifically calculus related to parametric surfaces. I've found http://teachers.yale.edu/curriculum/viewer/new_haven_06.04.05_u#f, but unfortunately, it comes short of providing me the most needed information, and so far I...- JessicaHelena
- Thread
- Calculus Formula Geodesic Multivariable calculus Parameterize Parametric
- Replies: 1
- Forum: Calculus
-
A
I Deriving Geodesic Equation from Lagrangian
Hi, If I have a massive particle constrained to the surface of a Riemannian manifold (the metric tensor is positive definite) with kinetic energy $$T=\dfrac 12mg_{\mu\nu} \dfrac{\text dx^{\mu}}{\text dt} \dfrac{\text dx^{\nu}}{\text dt}$$ then I believe I should be able to derive the geodesic...- acegikmoqsuwy
- Thread
- deriving Geodesic Geodesic equation Lagrangian
- Replies: 7
- Forum: Classical Physics
-
S
I Geodesic Deviation: Definition of Connecting Vector
Hello! I read a derivation for the geodesic deviation: you have 2 nearby geodesics and define a vector connecting points of equal proper time and calculate the second covariant derivative of this vector. I understand the derivation but I am a bit confused about the actual definition of this...- Silviu
- Thread
- deviation Geodesic
- Replies: 6
- Forum: Special and General Relativity
-
R
I Force Experienced on a Curved Geodesic Path
Can a person inside a spaceship falling freely on a geodesic path, experience the same just like a person inside a car experience a force on a turn on Earth i.e when the geodesic path is no more straight near a huge planet. Thanks.- rajeshmarndi
- Thread
- Force Geodesic Path
- Replies: 5
- Forum: Special and General Relativity
-
I Coordinate and proper time, null geodesic
I have a question which asks show that a null geodesic to get to r> R , r some constant, given the space time metric etc, takes infinite coordinate time but finite proper time. ( It may be vice versa ). I just want to confirm that, ofc there is no affine parameter for a null geodesic and so you...- binbagsss
- Thread
- Coordinate Geodesic Proper time Time
- Replies: 42
- Forum: Special and General Relativity
-
General Relativity - geodesic - affine parameter
Homework Statement Question attached: Homework Equations see below The Attempt at a Solution [/B] my main question really is 1) what is meant by 'abstract tensors' as I have this for my definition: to part a) ##V^u\nabla_uV^a=0## but you do say that ##V^u=/dot{x^u}## ; x^u is a...- binbagsss
- Thread
- Affine parameter General General relativity Geodesic Parameter Relativity
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
I Geodesic Maximality: Answers to Relativists' Questions
Hello, i know that relativists like to extend solutions of einstein equations so that they are geodesicly maximal (i.e. geodesics end only in singularity or infinite value of affine parameter). But why only geodesicly? Thus this geodesic maximality imply, that if i take any timelike or...- Umaxo
- Thread
- Geodesic
- Replies: 2
- Forum: Special and General Relativity
-
A Prove EL Geodesic and Covariant Geodesic Defs are Same via Riemmanian Geometry
... via plugging in the Fundamental theorem of Riemmanian Geometry : ##\Gamma^u_{ab}=\frac{1}{2}g^{uc}(\partial_ag_{bc}+\partial_bg_{ca}-\partial_cg_{ab})## Expanding out the covariant definition gives the geodesic equation as: (1) ##\ddot{x^u}+\Gamma^u_{ab} x^a x^b =0 ## (2) Lagrangian is...- binbagsss
- Thread
- Covariant Geodesic
- Replies: 6
- Forum: Special and General Relativity
-
A Constant along a geodesic vs covariantly constant
some questions I have seen tend to word as show that some quantity/tensor/scalar (e.g let this be ##K##) is constant along an affinely parameterised geodesic, others ask show covariantly constant. the definiton of covariantly constant/ parallel transport is: ## V^a\nabla_u K = 0 ##for the...- binbagsss
- Thread
- Constant Geodesic
- Replies: 3
- Forum: Special and General Relativity