Geodesics general relativity Definition and 33 Threads
-
I About the meaning of "expanding universe"
As required I start this thread on the meaning of "expanding universe" in the context of GR. FRW standard models have a special timelike congruence named "comoving" congruence. One can pick an adapted global chart in which the comoving congruence's worldlines are "at rest". Such a chart defines...- cianfa72
- Thread
- Cosmological models Expansion of the universe Frw metric Geodesics general relativity Spacetime curvature
- Replies: 17
- Forum: Special and General Relativity
-
J
A Calculating geodesic equation from Hamiltonian in presence of EM
I have a Hamiltonian $$ H = \frac{1}{2} g^{\alpha \beta}\left(p_\alpha- A_\alpha\right)\left(p_\beta- A_\beta\right) $$ I want to calculate the equation of motion. How can I calculate the equation of motions $$ \frac{dx^\mu}{d\tau} = g^{\mu\nu}(p_\nu - A_\nu) $$ This one is straight...- Jokar
- Thread
- Electromagnetism Equation of motion Geodesics general relativity Hamiltonian Special relativity
- Replies: 5
- Forum: Special and General Relativity
-
H
I Geodesics in Schwarzschild: Reparametrizing the Equations
Hi all, I am working through Sean Carroll's Textbook, particularly Chapter 5 regarding the Schwarzschild Solution. In this chapter, Energy and Angular Momentum are defined as follows: $$ \begin{align} E &= (1-\frac{2GM}{r})\frac{dt}{d\lambda} \Rightarrow \frac{dt}{d\lambda} = (1-...- Hunterc2429
- Thread
- Geodesics general relativity Homework and exercise Schwarzschild geometry
- Replies: 5
- Forum: Special and General Relativity
-
I Constants of motion symmetric spacetimes
As discussed in this thread, for a symmetric spacetime (i.e. with a KVF) there are conserved quantities as constants of motion. For instance in Schwarzschild spacetime there is a timelike KVF, hence for example the contraction of a geodesic tangent vector (4-velocity) and the timelike KVF...- cianfa72
- Thread
- Geodesics general relativity Noether's theorem Space curvature Spacetime
- Replies: 9
- Forum: Special and General Relativity
-
M
I Einstein brother-in-law elevator
As personal curiosity, I want to calculate which is the difference in "travelled height" between a photon that goes across the width of an elevator - which is more or less 2[m] in my country - and a tiny mass particle that free-falls starting at the same "height" as the photon origin, and is...- member 728827
- Thread
- Geodesics general relativity Schwarzchild metric
- Replies: 11
- Forum: Special and General Relativity
-
G
A How to Express the Schwarzschild Metric in Fermi Normal Coordinates?
I have been learning a bit about Fermi normal coordinates in Eric Poisson's "A Relativist's Toolkit". Problem 1.10 in this book is to express the Schwarzschild metric in Fermi normal coordinates about a radially infalling, timelike geodesic. I know that in the Fermi normal coordinates (denoted...- Gleeson
- Thread
- Geodesics general relativity Schwarzschild geometry
- Replies: 13
- Forum: Special and General Relativity
-
I General Relativity and the precession of the perihelion of Mercury
Hi, as test of GR I'm aware of there is the "anomalous" precession of the perihelion of Mercury. My question is: in which coordinate system are the previsions of GR verified concerning the above ? Thanks.- cianfa72
- Thread
- Coordinate system Einstein field equation General relativity Geodesics general relativity Precession
- Replies: 30
- Forum: Special and General Relativity
-
I Wald synchronous reference frame proof
Hi, on Wald's book on GR there is a claim at pag. 43 about the construction of synchronous reference frame (i.e. Gaussian coordinate chart) in a finite region of any spacetime. In particular he says: $$n^b\nabla_b (n_aX^a)=n_aX^b\nabla_b \, n^a$$Then he claims from Leibnitz rule the above equals...- cianfa72
- Thread
- Coordinate chart General relativity Geodesic equation Geodesics general relativity Reference frame
- Replies: 27
- Forum: Special and General Relativity
-
B Find Geodesics in Dynamic Ellis Orbits Metric
Does anyone see a way I can find geodesics in the metric ##ds^2=-dt^2+dp^2+(5p^2+4t^2)d\phi^2## (ones with nonzero angular momentum)? I'm hoping it can be done analytically, but that may be wishful thinking. FYI, this is the metric listed at the bottom of the Wikipedia article about Ellis Wormholes.- Onyx
- Thread
- Dynamic Geodesics general relativity Metric tensor Orbits Wormholes
- Replies: 92
- Forum: Special and General Relativity
-
B Basic introduction to gravitation as curved spacetime
Hi, my daughter saw my MTW copy on the desk and she asked me about the picture with the apple in front. To introduce her to the idea of gravitation as curved spacetime I answered like this: Consider you (A) and a your friend (B) at two different spots on a garden each with a firecracker. Take...- cianfa72
- Thread
- Curvature of spacetime Geodesics general relativity Gravitation Introduction Spacetime
- Replies: 57
- Forum: Special and General Relativity
-
I About global inertial frames in GR
Hi, starting from this thread Principle of relativity for proper accelerating frame of reference I'm convincing myself of some misunderstanding about what a global inertial frame should actually be. In GR we take as definition of inertial frame (aka inertial coordinate system or inertial...- cianfa72
- Thread
- Coordinate chart Frame of reference Frames General relativity Geodesics general relativity Global Gr Inertial
- Replies: 78
- Forum: Special and General Relativity
-
M
I Equivalence principle question
The equivalence principle states that a person stood on Earth would experience “gravity” the same as if he was in an elevator in space traveling at 1g. I get this. but when Einstein was first exploring this, I read he came to the realisation that a person free falling on Earth (if in a vacuum)...- mucker
- Thread
- Equivalence Equivalence principle General relativity Geodesics general relativity Gravity Principle
- Replies: 36
- Forum: Special and General Relativity
-
M
A How to Integrate the geodesic equations numerically?
Hello there, I've been considering the geodesic equations of motion for a test particle in Schwarzschild geometry for some time now. Similar to what we can do with the Kepler problem I would like to be able to numerically integrate the equations of motion. I'm quite interested to see how...- Matter_Matters
- Thread
- Equations of motion General relativity Geodesic Geodesics general relativity Integrate Numerical integration Relativity
- Replies: 6
- Forum: Special and General Relativity
-
A
B Euler-Lagrange equation for calculating geodesics
Hello I am little bit confused about lagrange approximation to geodesic equation: So we have lagrange equal to L=gμνd/dxμd/dxν And we have Euler-Lagrange equation:∂L/∂xμ-d/dt ∂/∂x(dot)μ=0 And x(dot)μ=dxμ/dτ. How do I find the value of x(dot)μ?- AleksanderPhy
- Thread
- Euler lagrange equation Euler-lagrange General relativity Geodesic equation Geodesics Geodesics general relativity
- Replies: 7
- Forum: Special and General Relativity
-
A
I Solving Geodesic Equations with Killing Vectors: Is There a General Solution?
Hello I am concered about way of solving geodesic equation. Is there a general solution to geodesic equation? How to calculate the Cristoffel symbol at the right side of the equation? Thanks for helping me out!- AleksanderPhy
- Thread
- Geodesic Geodesic equation Geodesics general relativity Gravity Spacetime Spacetime curvature
- Replies: 2
- Forum: Special and General Relativity
-
D
Deriving geodesic equation using variational principle
I am trying to derive the geodesic equation using variational principle. My Lagrangian is $$ L = \sqrt{g_{jk}(x(t)) \frac{dx^j}{dt} \frac{dx^k}{dt}}$$ Using the Euler-Lagrange equation, I have got this. $$ \frac{d^2 x^u}{dt^2} + \Gamma^u_{mk} \frac{dx^m}{dt} \frac{dx^k}{dt} =...- dwellexity
- Thread
- deriving General relativity Geodesic Geodesic equation Geodesics general relativity Principle Tensor algebra Variational method Variational principle
- Replies: 29
- Forum: Special and General Relativity
-
U
Conditions on Christoffel Symbols?
Homework Statement Write down the geodesic equation. For ##x^0 = c\tau## and ##x^i = constant##, find the condition on the christoffel symbols ##\Gamma^\mu~_{\alpha \beta}##. Show these conditions always work when the metric is of the form ##ds^2 = -c^2dt^2 +g_{ij}dx^idx^j##.Homework...- unscientific
- Thread
- Christoffel Christoffel symbols Conditions Geodesics general relativity Symbols
- Replies: 5
- Forum: Advanced Physics Homework Help
-
U
What Are the Conditions on Christoffel Symbols for Given Geodesics?
Homework Statement Using the geodesic equation, find the conditions on christoffel symbols for ##x^\mu(\tau)## geodesics where ##x^0 = c\tau, x^i = constant##. Show the metric is of the form ##ds^2 = -c^2 d\tau^2 + g_{ij}dx^i dx^j##. Homework EquationsThe Attempt at a Solution The geodesic...- unscientific
- Thread
- Geodesic Geodesics general relativity
- Replies: 3
- Forum: Advanced Physics Homework Help
-
U
How is Frequency Redshift Related to Sphere's Proper Area and Flux Ratio?
Homework Statement (a) Show the relation between frequency received and emitted (b) Find the proper area of sphere (c) Find ratio of fluxes Homework EquationsThe Attempt at a Solution Part (a) Metric is ##ds^2 = -c^2dt^2 + a(t)^2 \left( \frac{dr^2}{1-kr^2}+ r^2(d\theta^2 + \sin^2\theta)...- unscientific
- Thread
- Frequency Friedmann Geodesics general relativity Gravitational redshift Redshift Universe
- Replies: 2
- Forum: Advanced Physics Homework Help
-
U
Frequency of Photon in Schwarzschild Metric?
Homework Statement The schwarzschild metric is given by ##ds^2 = -Ac^2 dt^2 + \frac{1}{A} dr^2 + r^2\left( d\theta^2 + sin^2\theta d\phi^2 \right)##. A particle is orbiting in circular motion at radius ##r##. (a) Find the frequency of photon at infinity ##\omega_{\infty}## in terms of when it...- unscientific
- Thread
- Frequency Geodesics general relativity Metric Photon Schwarzschild Schwarzschild metric Spacetime metric
- Replies: 6
- Forum: Advanced Physics Homework Help
-
U
Satellite orbiting around Earth - Spacetime Metric
Homework Statement The metric near Earth is ##ds^2 = -c^2 \left(1-\frac{2GM}{rc^2} \right)dt^2 + \left(1+\frac{2GM}{rc^2} \right)\left( dx^2+dy^2+dz^2\right)##. (a) Find all non-zero christoffel symbols for this metric. (b) Find satellite's period. (c) Why does ##R^i_{0j0} \simeq \partial_j...- unscientific
- Thread
- Earth Geodesics general relativity Metric Orbit Satellite Spacetime Spacetime metric
- Replies: 4
- Forum: Advanced Physics Homework Help
-
U
Light-like Geodesic - What are the limits of integration?
Homework Statement Consider the following geodesic of a massless particle where ##\alpha## is a constant: \dot r = \frac{\alpha}{a(t)^2} c^2 \dot t^2 = \frac{\alpha^2}{a^2(t)} Homework EquationsThe Attempt at a Solution Part (a) c \frac{dt}{d\lambda} = \frac{\alpha}{a} a dt =...- unscientific
- Thread
- Geodesic Geodesics general relativity Integration Limits Limits of integration Spacetime metric
- Replies: 11
- Forum: Advanced Physics Homework Help
-
U
How do I find the scale factor of cosmological constant?
Homework Statement (a)Sketch how the contributions change with time (b)For no cosmological constant, how long will this universe exist? (c)How far would a photon travel in this metric? (d)Find particular density ##\rho_E## and scale factor (e)How would this universe evolve?[/B] Homework...- unscientific
- Thread
- Constant Cosmolgy Cosmological Cosmological constant Friedmann General relativity Geodesics general relativity Homework Scale Scale factor
- Replies: 3
- Forum: Advanced Physics Homework Help
-
U
What is the Geodesic Equation for FRW Metric's Time Component?
Taken from Hobson's book: Metric is given by ds^2 = c^2 dt^2 - R^2(t) \left[ d\chi^2 + S^2(\chi) (d\theta^2 + sin^2\theta d\phi^2) \right] Thus, ##g_{00} = c^2, g_{11} = -R^2(t), g_{22} = -R^2(t) S^2(\chi), g_{33} = -R^2(t) S^2(\chi) sin^2 \theta##. Geodesic equation is given by: \dot...- unscientific
- Thread
- Component Friedmann Frw metric Geodesics general relativity Metric Time
- Replies: 5
- Forum: Special and General Relativity
-
U
Lowering Indices: Tensor Calculus Basics
At low speeds and assuming pressure ##P=0##, T^{\alpha \beta} = \rho U^\alpha U^\beta g_{\alpha \mu} g_{\gamma \beta} T^{\alpha \beta} = \rho g_{\alpha \mu} g_{\gamma \beta} U^\alpha U^\beta T_{\gamma \mu} = \rho U_\mu U^\beta g_{\gamma \beta} Setting ##\gamma = \mu = 0##: T_{00} = \rho...- unscientific
- Thread
- Geodesics general relativity Indices Tensor calculus
- Replies: 8
- Forum: Special and General Relativity
-
U
Geodesic Deviation Equation Solved
Taken from my lecturer's notes on GR: I'm trying to understand what goes on from 2nd to 3rd line: N^\beta \nabla_\beta (T^\mu \nabla_\mu T^\alpha) - N^\beta \nabla_\beta T^\mu \nabla_\mu T^\alpha = -T^\beta \nabla_\beta N^\mu \nabla_\mu T^\alpha Using commutator relation ## T^v \nabla_v...- unscientific
- Thread
- deviation Geodesic Geodesics general relativity
- Replies: 7
- Forum: Special and General Relativity
-
U
Einstein Tensor - Particle at rest?
Homework Statement (a)Find Christoffel symbols (b) Show the particles are at rest, hence ##t= \tau##. Find the Ricci tensors (c) Find zeroth component of Einstein Tensor Homework EquationsThe Attempt at a Solution Part (a)[/B] Let lagrangian be: -c^2 \left( \frac{dt}{d\tau}\right)^2 +...- unscientific
- Thread
- Einstein Einstein field equations Geodesics general relativity Lagrangian mechanics Particle Rest Tensor Tensor calculus
- Replies: 7
- Forum: Advanced Physics Homework Help
-
U
Flat Space - Christoffel symbols and Ricci = 0?
Homework Statement [/B] (a) Find christoffel symbols and ricci tensor (b) Find the transformation to the usual flat space form ## g_{\mu v} = diag (-1,1,1,1)##. Homework EquationsThe Attempt at a Solution Part(a) [/B] I have found the metric to be ## g_{tt} = g^{tt} = -1, g_{xt} = g_{tx} =...- unscientific
- Thread
- Christoffel Christoffel symbols Coefficient Connection Flat Geodesics general relativity Space Symbols Tensor calculus
- Replies: 5
- Forum: Advanced Physics Homework Help
-
U
General Relativity - Deflection of light
Homework Statement Find the deflection of light given this metric, along null geodesics. Homework EquationsThe Attempt at a Solution [/B] Conserved quantities are: e \equiv -\zeta \cdot u = \left( 1 - \frac{2GM}{c^2r} \right) c \frac{dt}{d\lambda} l \equiv \eta \cdot u = r^2 \left( 1 -...- unscientific
- Thread
- Deflection General General relativity Geodesic Geodesics general relativity Light Relativity Schwarzchild
- Replies: 1
- Forum: Advanced Physics Homework Help
-
U
General Relativity - Circular Orbit around Earth
Homework Statement (a) Find the proper time in the rest frame of particle (b) Find the proper time in the laboratory frame (c) Find the proper time in a photon that travels from A to B in time P Homework EquationsThe Attempt at a Solution Part(a) [/B] The metric is given by: ds^2 =...- unscientific
- Thread
- Circular Circular orbit Earth General General relativity Geodesics general relativity Orbit Relativity Schwarzchild Spacetime metric
- Replies: 32
- Forum: Advanced Physics Homework Help
-
U
Index Notation: Understanding LHS = RHS
I was reading my lecturer's notes on GR where I came across the geodesic equation for four-velocity. There is a line which read: Summing them up, \partial_i g_{aj} u^i u^j - \frac{1}{2} \partial_a g_{ij} u^i u^j = \frac{1}{2} u^i u^j \partial_a g_{ij} I'm trying to understand how LHS = RHS...- unscientific
- Thread
- General relativity Geodesic equation Geodesics general relativity Index Index notation Notation
- Replies: 8
- Forum: Special and General Relativity
-
By what method did Einstein derived his gravitational field equation?
Hi. In class, the professor has tried to derive the equation by using the principle of least-action. (But not yet completed. Maybe next class...) However I heard this method is used by Hilbert, who had derived the equation 5 days before Einstein derived it. Then, what method did Einstein use...- DOTDO
- Thread
- Einstein Field General relativity Geodesics general relativity Gravitation Gravitational Gravitational field Method
- Replies: 8
- Forum: Special and General Relativity
-
Geodesics - Some help, please.
We've all seen an image similar to this one: This is displaying the projection of GR Geodesics onto 3-D space (well, 2D in the picture). I'm still working my way through the General Relativity texts, so I'm not yet able to do the calculation on my own. Can anyone give me a formula that I can...- RCopernicus
- Thread
- Geodesics Geodesics general relativity
- Replies: 4
- Forum: Special and General Relativity