Gradient vector Definition and 45 Threads
-
L
I Question about Gradient's Domain and Range
İf $$f:\mathbb{R^n}\to \mathbb{R}$$ then $$\nabla f:\mathbb{R^n}\to \mathbb{R^n}$$ $$x\to \nabla f(x)$$ is true?- littlemathquark
- Thread
- Directional derivative Function Gradient vector
- Replies: 6
- Forum: Differential Geometry
-
Proof of a vector identity in electromagnetism
During the calculations, I tried to solve the following $$ \vec{\nabla} \big[\vec{M}\cdot\vec{\nabla} \big(\frac{1}{r}\big)\big] = -\big[\vec{\nabla}(\vec{M}\cdot \vec{r}) \frac{1}{r^3} + (\vec{M}\cdot \vec{r}) \big(\vec{\nabla} \frac{1}{r^3}\big) \big]$$ by solving the first term i.e...- Ishika_96_sparkles
- Thread
- Gradient vector Vector calculus
- Replies: 9
- Forum: Calculus and Beyond Homework Help
-
Vector field of gradient vector and contour plot
Given the equation ##\frac{xy} 3##. It is a fact that the gradient vector function is always perpendicular to the contour graph of the origional function. However it is not so evident in the plot above. Any thought will be appreciated.- Leo Liu
- Thread
- Contour plot Field Gradient Gradient vector Plot Vector Vector field
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
D
Use the gradient vector to find out the direction
For my understanding, to move to the coolest place, it has to move in direction of -∇f(x,y) How can I find the value of 'k' to evaluate the directional derivative and what can I do with the vertices given.- daphnelee-mh
- Thread
- Direction Gradient Gradient vector Vector
- Replies: 8
- Forum: Calculus and Beyond Homework Help
-
S
Multivariate calculus problem: Calculating the gradient vector
1. We find the partial derivatives of ##f## with respect to ##x## and ##y## to get ##f_x = \frac{2\ln{(x)}}{x}## and ##f_y = \frac{2\ln{(y)}}{y}.## This makes the gradient vector $$\nabla{f} = \begin{bmatrix} f_x \\ f_y \end{bmatrix} = \begin{bmatrix} \frac{2\ln{(x)}}{x} \\ \frac{2\ln{(y)}}{y}...- squenshl
- Thread
- Calculus Gradient Gradient vector Multivariate Multivariate calculus Vector
- Replies: 7
- Forum: Calculus and Beyond Homework Help
-
K
I Gradient vector without a metric
Is it possible to introduce the concept of a gradient vector on a manifold without a metric?- kiuhnm
- Thread
- Gradient Gradient vector Manifold Metric Metric tensor Vector
- Replies: 17
- Forum: Differential Geometry
-
B
I Geometrical interpretation of gradient
In 'Introduction to Electrodynamics' by Griffiths, in the section of explaining the Gradient operator, it is stated a theorem of partial derivatives is: $$ dT = (\delta T / \delta x) \delta x + (\delta T / \delta y) \delta y + (\delta T / \delta z) \delta z $$ Further he goes onto say: $$ dT =... -
M
I Difference between 1-form and gradient
I have seen and gone through this thread over and over again but still it is not clear. https://www.physicsforums.com/threads/vectors-one-forms-and-gradients.82943/The gradient in different coordinate systems is dependent on a metric But the 1-form is not dependent on a metric. It is a metric...- meteo student
- Thread
- Difference Differential forms Gradient Gradient vector Vector analysis
- Replies: 14
- Forum: Differential Geometry
-
Functional relation between u(x,y,z) and v(x,y,z)
Homework Statement Let ##u## and ##v## be differentiable functions of ##x,~y## and ##z##. Show that a necessary and sufficient condition that ##u## and ##v## are functionally related by the equation ##F(u,v)=0## is that ##\vec \nabla u \times \vec \nabla v= \vec 0## Homework Equations (Not...- arpon
- Thread
- Function Functional Gradient vector Relation
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
I Gradient Vector- largest possible rate of change?
Hello, My professor just gave us a True or False problem that states: ∇H(x,y), the gradient vector of H(x,y), gives us the largest possible rate of change of H at (x,y). Now, he said the answer is true, but it was my understanding that the gradient itself gives the direction of where the...- Jason Sylvestre
- Thread
- Change Gradient Gradient vector Rate Rate of change Vector
- Replies: 1
- Forum: Calculus
-
F
Why this maximization approach fails?
Homework Statement Find all points at which the direction of fastest change of the function f(x,y) = x^2 + y^2 -2x - 2y is in the direction of <1,1>. Homework Equations <\nabla f = \frac{\delta f}{\delta x} , \frac{\delta f}{\delta y} , \frac{\delta f}{\delta z}> The Attempt at a Solution...- friendbobbiny
- Thread
- Approach Gradient vector Maximization Multivariable calculus
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
B
Gradient Vector is Orthogonal to the Level Curve
Homework Statement Let f(x,y)=arctan(x/y) and u={(√2)/2,(√2)/2} d.) Verify that ∇fp is orthogonal to the level curve through P for P=(x,y)≠(0,0) where y=mx for m≠0 are level curves for f. Homework Equations The Attempt at a Solution ∇f={(y)/(x^2+y^2),(-y)/(x^2+y^2)} m=1/tan(k) where...- BennyT
- Thread
- Curve Gradient Gradient vector Orthogonal Vector
- Replies: 6
- Forum: Calculus and Beyond Homework Help
-
An equation for the path that the shark will swim on
Homework Statement [/B] A shark will in the direction of the most rapidly increasing concentration of blood in water. Suppose a shark is at a point x_0,y_0 when it first detects blood in the water. Find an equation for the path that the shark will follow by setting up and solving a...- kostoglotov
- Thread
- Differential equation Gradient vector Integration Path Separation of variables
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
Directional derivatives and the gradient vector
If the unit vector u makes an angle theta with the positive x-axis then we can write u = <cos theta, sin theta> Duf(x, y) = fx(x,y) cos theta + fy(x,y) sin theta What if I am dealing with a function with three variables (x, y, z)? How can I find the directional derivative if I have been given...- BondKing
- Thread
- Derivatives Gradient Gradient vector Vector
- Replies: 6
- Forum: Differential Geometry
-
P
Gradient vector perpendicular to level curves?
Homework Statement can anyone explain/prove why the gradient vector is perpendicular to level curves? Homework Equations The Attempt at a Solution- princejan7
- Thread
- Curves Gradient Gradient vector Perpendicular Vector
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
T
Meaning of zero gradient vector with existant directional vector
I'm supposed to find the gradient vector of the function below at (0,0), and then use the dot product with the unit vector to find the directional derivative. Then find the directional derivative using the limit definition of a directional derivative, and explain why I get two different...- tentoes
- Thread
- Gradient Gradient vector Vector Zero
- Replies: 12
- Forum: Calculus and Beyond Homework Help
-
Sketch the gradient vector for the function
Homework Statement Homework Equations The Attempt at a Solution Ok so I think I know how to get the direction. It's going to be perpendicular to the tangent of the level curve and pointing in the direction where f(x,y) is increasing. So on the graph that was provided it will...- Feodalherren
- Thread
- Function Gradient Gradient vector Sketch Vector
- Replies: 10
- Forum: Calculus and Beyond Homework Help
-
Interpretation of the Gradient Vector?
I've always thought of the gradient of a scalar function (id est, ##\nabla\varphi##) as being a vector field. However, I started thinking about it just now in terms of transformation with respect to coordinate changes, and I noticed that the gradient transforms covariantly. Thus, shouldn't the...- Mandelbroth
- Thread
- Gradient Gradient vector Interpretation Vector
- Replies: 5
- Forum: Calculus
-
B
Gradient Vector Problem: Steepness and Slope Direction?
Homework Statement For a hill the elevation in meters is given by z=10 + .5x +.25y + .5xy - .25x^2 -.5y^2, where x is the distance east and y is the distance north of the origin. a.) How steep is the hill at x=y=1 i.e. what is the angle between a vector perpendicular to the hill and the z...- bmb2009
- Thread
- Gradient Gradient vector Vector
- Replies: 4
- Forum: Introductory Physics Homework Help
-
C
Application of gradient vector in 3D
Homework Statement The temperature ##T## in a region of Cartesian ##(x,y,z)-## space is given by $$T(x,y,z) = (4 + 3x^2 + 2y^2 + z^2)^{10},$$ and a fly is intially at the point ##(-5,6,7)##. Find a vector parametric representation for the curve which the fly should move in order to ensure...- CAF123
- Thread
- 3d Application Gradient Gradient vector Vector
- Replies: 14
- Forum: Calculus and Beyond Homework Help
-
C
Possible Gradient Vector question
Homework Statement The temperature T of a plate lying in the (x,y) plane is given by T(x,y) = 50 - x^2 - 2y^2. A bug on the plate is intially at the point (2,1). What is the equation of the curve the bug should follow so as to ensure that the temperature decreases as rapidly as possible...- CAF123
- Thread
- Gradient Gradient vector Vector
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
C
Vector calc, gradient vector fields
Homework Statement Is F = (2ye^x)i + x(sin2y)j + 18k a gradient vector field? The Attempt at a Solution Yeah I just don't know...I started to find some partial derivatives but I really don't know what to do here. Please help!- calculusisrad
- Thread
- Fields Gradient Gradient vector Vector Vector fields
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
S
Is the Gradient Vector Always in the Radial Direction?
As we know grad F (F surface) is in normal direction. But we also have (grad F(r)) x r = F'(r) (r) x r = 0 this implies grad F is in direction of r i.e., radial direction. Radial and normal directions need not be same. Can any öne clarify THE DIRECTION OF GRAD VECTOR?- seshikanth
- Thread
- Gradient Gradient vector Vector
- Replies: 3
- Forum: Linear and Abstract Algebra
-
A
Why is the gradient vector normal to the level surface?
In functions involving only two variables the gradient is supposed to be the instantaneous rate of change of one variable with respect to the other and this is usually TANGENT to the curve. So then why is the gradient NORMAL to the curve at that point, since it is supposed to represent the... -
E
What is the gradient vector problem for a function with dependent variables?
Homework Statement If z = f(x,y) such that x = r + t and y = e^{rt}, then determine \nabla f(r,t) Homework Equations \nabla f(x,y) = <f_x,f_y> The Attempt at a Solution Now if i follow this the way i think it should be done then i find the partials of f wrt x and y and then...- evo_vil
- Thread
- Gradient Gradient vector Vector
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
G
Why does the gradient vector point straight outward from a graph?
A gradient vector points out of a graph (or a surface in 3D case). Locally, it makes an angle of 90 degrees with the graph at a particular point. Why is that so? Thanks. -
F
Gradient vector property proofs
Homework Statement Show that the operation of taking the gradient of a function has the given property. Assume that u and v are differentiable functions of x and y and that a, b are constants. Homework Equations Δ = gradient vector 1) Δ(u/v) = vΔu - uΔv / v^2 2) Δu^n = nu^(n-1)Δu...- fastXattack
- Thread
- Gradient Gradient vector Proofs Property Vector
- Replies: 5
- Forum: Calculus and Beyond Homework Help
-
T
Proving that a function is gradient vector of another function
Trying to prove that the gradient of a scalar field is symmetric(?) Struggling with the formatting here. Please see the linked image. Thanks. http://i.imgur.com/9ZelT.png- tewaris
- Thread
- Function Gradient Gradient vector Vector
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
P
Understanding Gradient Vector of Scalar Field (grad)
Dear All I am having trouble understanding the gradient vector of a scalar field (grad). I understand that you can have a 2D/3D space with each point within that space having a scalar value, determined by a scalar function, creating a scalar field. The grad vector is supposed to point in...- paul_harris77
- Thread
- Field Grad Gradient Gradient vector Scalar Scalar field Vector
- Replies: 1
- Forum: Calculus
-
R
IMPORTANT - what is the geometric intepretation of the gradient vector?
IMPORTANT! ---- what is the geometric intepretation of the gradient vector? Assume the situation in which I have a slope, a component of a function dependent on x and y, which is at an angle to the xy plane. The gradient vector would be perpendicular to the tangent plane at the point in which i...- richardlhp
- Thread
- Geometric Gradient Gradient vector Important Vector
- Replies: 8
- Forum: Calculus
-
P
Gradient Vector: Find the Projection of Steepest Ascent Path on xy-Plane
Homework Statement A hiker climbs a mountain whose height is given by z = 1000 - 2x2 - 3y2. When the hiker is at point (1,1,995), she moves on the path of steepest ascent. If she continues to move on this path, show that the projection of this path on the xy-plane is y = x3/2 Homework...- plexus0208
- Thread
- Gradient Gradient vector Vector
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
Hard time visualizing gradient vector vs. tangent vector.
OK, this is really confusing me. Mostly because i suck at spatial stuff. If the gradient vector at a given point points in the direction in which a function is increasing, then how can it be perpendicular to the tangent plane at that point? If it's perpendicular to the tangent plane...- moe darklight
- Thread
- Gradient Gradient vector Hard Tangent Tangent vector Time Vector
- Replies: 3
- Forum: Calculus
-
Z
Directional derivatives and the gradient vector problem
Homework Statement show that the pyramids cut off from the first octant by any tangent planes to the surface xyz=1 at points in the first octant must all have the same volume Homework Equations The Attempt at a Solution i don't know how to start this problem. any hints?- zhuyilun
- Thread
- Derivatives Gradient Gradient vector Vector
- Replies: 6
- Forum: Calculus and Beyond Homework Help
-
K
Directional Derivatives and the Gradient Vector
Homework Statement Suppose you are climbing a hill whose shape is given by the equation below, where x, y, and z are measured in meters, and you are standing at a point with coordinates (120, 80, 1064). The positive x-axis points east and the positive y-axis points north. z = 1200 - 0.005x2...- ktobrien
- Thread
- Derivatives Gradient Gradient vector Vector
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
C
Gradient vector for polar coordinates
Homework Statement Find the gradient vector of: g(r, \theta) = e^{-r} sin \theta Homework Equations The Attempt at a Solution I know how to get gradients for Cartesian - partially derive the equation of the surface wrt each variable. But I have no idea how to do it for...- compliant
- Thread
- Coordinates Gradient Gradient vector Polar Polar coordinates Vector
- Replies: 6
- Forum: Calculus and Beyond Homework Help
-
B
Gradient Vector Proof for Local Minimizer: f(x)=0, Df(x)=0 | R^n --> R
Homework Statement Suppose that the function f: Rn --> R has first-order partial derivatives and that the point x in Rn is a local minimizer for f: Rn --> R, meaning that there is a positive number r such that f(x+h) > f(x) if dist(x,x+h) < r. Prove that Df(x)=0. Homework Equations...- bubblesewa
- Thread
- Gradient Gradient vector Proof Vector
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
A
Calculating Gradient Vector at Point S: x=4, y=8, z=-6
Homework Statement Calculate the gradient vector at the point S for the function, f(x,y,z)=x-\sqrt{z^2 - y^2}; S(x,y,z)=(4, 8, -6). 2. The attempt at a solution \frac{\partial f}{\partial x} = 1 \frac{\partial f}{\partial y} = \frac{y}{\sqrt{z^2-y^2}} \frac{\partial f}{\partial z} =...- Air
- Thread
- Gradient Gradient vector Point Vector
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
H
Gradient vector as Normal vector
I'm trying to understand why the gradient vector is always normal to a surface in space. My textbook describes r(t) as a curve along the surface in space. Subsequently, r'(t) is tanget to this curve and perpendicular to the gradient vector at some point P, which implies the gradient vector to be...- hotcommodity
- Thread
- Gradient Gradient vector Normal Vector
- Replies: 11
- Forum: Calculus
-
O
How Do You Determine the Angle Between Gradient Vectors in Parametric Formulas?
Homework Statement Find the angle between (grad)u and (grad)v at all points with x!=0 and y!= 0 if x =( e^u)*(cos v) and y = (e^u) (sinv) . The Attempt at a Solution is not here x and y a function of u and v? How are we going to find grad of u and v? Should we pull out u and y from...- oahsen
- Thread
- Gradient Gradient vector Vector
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
K
Maximizing Gradient for Steep Climb on Hill Surface
"You are standing at the point (30, 20, 5) on a hill with the shape of the surface z=100exp((-x^2+3y^2)/701). In what direction should you proceed in order to climb most steeply?" SInce the grad vector allegedly points in the most steep direction of the surface, I guess I'll have to compute...- kasse
- Thread
- Gradient Gradient vector Vector
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
K
What is the purpose of the gradient vector in calculus?
What is the gradient vector, really? My textbook both states that it is a vector normal to a certain point on a surface, but also that it is a vector that points in the direction with the maximum slope of a surface. I find this slightly ambiguous. -
K
Directional derivative and gradient vector
Homework Statement Find the directional derivative of f=sqrt(xyz) at P(2,-1,-2) in the direction of v=i+2j-2k The Attempt at a Solution I calculate the gradient vector and obtain grad(f) at P= <1/2, 1, 1/2> Then I find the unit vector of v, which is <1/3, 2/3, -2/3> The...- kasse
- Thread
- Derivative Directional derivative Gradient Gradient vector Vector
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
K
Finding Gradient Vector of f(x,y,z) = 2*sqrt(xyz) at Point (3,-4,-3)
I want to find the gradient vector of f(x,y,z)=2*sqrt(xyz) at the point ((3,-4,-3). I find the partials and set in for the x-, y-, and z-values, and find the grad. vector (2, (1,5), 2). The right solution is (2, (-1,5), -2), so I have obviously made a mistake with the sqrt. How do I know...- kasse
- Thread
- Gradient Gradient vector Vector
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
T
Gradient vector over an area of a surface
what follows is a question I asked myself, the answer I figured out, and the new question that arose as a result. I was thinking about the gradient vector on a 3d surface, and how it shows the direction of the max rate of change at a point. the 2 directions perpendicular to it are tangent to...- trancefishy
- Thread
- Area Gradient Gradient vector Surface Vector
- Replies: 3
- Forum: Calculus
-
G
Partial integration of gradient vector to find potential field
"partial integration" of gradient vector to find potential field I'm studying out of Stewart's for my Calc IV class, and hit a stumbling block in his section on the fundamental theorem for line integrals. He shows a process of finding a potential function f such that \vec{F} = \nabla f , where...