Ricci scalar Definition and 26 Threads
-
J
Derive the relationship between Ricci scalar and Gauss Curvature
Hi, I'm self-learning some physics topics and came across an exercise to derive the relationship between Ricci scalar and Gauss curvature in 2-surface, ##R=2K##, where ##K \equiv \frac {R_{1212}} {g}##; given the Ricci tensor ##R_{\alpha \beta} \equiv R^\lambda_{\, \alpha \lambda \beta}## and...- jag
- Thread
- Gauss Ricci scalar Ricci tensor
- Replies: 12
- Forum: Advanced Physics Homework Help
-
D
I Ricci Scalar For Astronomical Body
What would be a rough estimate for the Ricci scalar curvature of an astronomical object like the sun? Assuming the sun is a perfect fluid and you are calculating the rest frame of the sun, only the density component would be factored in. Assuming the sun is roughly 2*1030 kg. Please just make...- dsaun777
- Thread
- Curvature Ricci scalar
- Replies: 2
- Forum: Special and General Relativity
-
Python Using np.einsum to calculate Ricci scalar
I was trying to calculate $$R = g^{ij}R_{ij}$$ bu using einsum but I couldn't not work it out. Anyone can help me ? Here are some of the resources https://stackoverflow.com/questions/26089893/understanding-numpys-einsum...- Arman777
- Thread
- Ricci scalar Scalar
- Replies: 7
- Forum: Programming and Computer Science
-
J
I Variation of Ricci scalar wrt derivative of metric
I understand from the wiki entry on the Einstein-Hilbert action that: $$\frac{\delta R}{\delta g^{\mu\nu}}=R_{\mu\nu}$$ What is the following? $$\frac{\delta R}{\delta(\partial_\lambda g^{\mu\nu})}$$ Is there a place I could look up such GR expressions on the internet? Thanks- jcap
- Thread
- Derivative Metric Ricci scalar Scalar Variation
- Replies: 3
- Forum: Special and General Relativity
-
A
B Is the Space with Ricci Scalar Zero Flat?
Given metric ds2=dr2-r2dθ2 Gamma comes as Γ122=r,Γ212=Γ221=1/r The Reimann tensor comes as R11=R2121=∂1Γ212-Γm12Γ21m=0,only non zero terms . Similary R22=R1212=∂1Γ122-Γm21Γ1m2=0,only non zero terms. Therefore R(ricci scaler)=0 Is the space flat??- Apashanka
- Thread
- Calculation Ricci scalar Scalar
- Replies: 16
- Forum: Special and General Relativity
-
F
I Covariant derivative of Ricci scalar causing me grief
Hi all I'm having trouble understanding what I'm missing here. Basically, if I write the Ricci scalar as the contracted Ricci tensor, then take the covariant derivative, I get something that disagrees with the Bianchi identity: \begin{align*} R&=g^{\mu\nu}R_{\mu\nu}\\ \Rightarrow \nabla...- ft_c
- Thread
- Covariant Covariant derivative Derivative Ricci scalar Scalar
- Replies: 4
- Forum: Differential Geometry
-
J
A On the dependence of the curvature tensor on the metric
Hello! I was thinking about the Riemann curvature tensor(and the torsion tensor) and the way they are defined and it seems to me that they just need a connection(not Levi-Civita) to be defined. They don't need a metric. So, in reality, we can talk about the Riemann curvature tensor of smooth...- Joker93
- Thread
- Curvature Curvature tensor Manifolds Metric Ricci scalar Riemannian geometry Tensor
- Replies: 6
- Forum: Differential Geometry
-
Directional Derivative of Ricci Scalar: Lev-Civita Connection?
I have a question about the directional derivative of the Ricci scalar along a Killing Vector Field. What conditions are necessary on the connection such that K^\alpha \nabla_\alpha R=0. Is the Levi-Civita connection necessary? I'm not sure about it but I believe since the Lie derivative is...- loops496
- Thread
- Connection Derivative General relativity Killing vector Levi-civita Ricci scalar Scalar
- Replies: 4
- Forum: Special and General Relativity
-
Integration of Ricci Scalar Over Surface
Does this integration of Ricci scalar over surface apply in general or just for compact surfaces? ∫RdS = χ(g) where χ(g) is Euler characteristic. And could anybody give me some good references to prove the formula?- darida
- Thread
- Integration Ricci scalar Scalar Surface
- Replies: 5
- Forum: Differential Geometry
-
Ricci scalar computation quick question
Homework Statement [/B] I am trying to compute ##R## from the 3-d metric: ##ds^{2}=d\chi^{2}+f^{2}\chi(d\theta^{2}+sin^{2}\theta d\phi^{2})##Homework Equations [/B] The space also satisfies the below relationships: ##R=3k## ## R_{abcd}=\frac{1}{6}R(g_{ac}g_{db}-g_{ad}g_{bc})## [1] The Attempt...- binbagsss
- Thread
- Computation Ricci scalar Scalar
- Replies: 1
- Forum: Advanced Physics Homework Help
-
S
Why is Scalar Cam Built with Second-Order Derivative of Metric Ricci Scalar?
hi why only scalar cam build with second order of derivative of metric is Ricci scalar? thanks- sadegh4137
- Thread
- Cam Derivative Metric Ricci scalar Scalar
- Replies: 1
- Forum: Special and General Relativity
-
Direction derivative of Ricci scalar w.r.t. killing field
Homework Statement I didn't really know if this belonged here or in the math section but it is from a physics book so what the heck =D. I have to show that the directional derivative of the ricci scalar along a killing vector field vanishes i.e. \triangledown _{\xi }R = \xi ^{\rho...- WannabeNewton
- Thread
- Derivative Direction Field Ricci scalar Scalar
- Replies: 9
- Forum: Advanced Physics Homework Help
-
S
Ricci scalar and curveture of FRW metric
hi we know that our universe is homogenous and isotropic in large scale. the metric describe these conditions is FRW metric. In FRW, we have constant,k, that represent the surveture of space. it can be 1,0,-1. but the the Einstan Eq, Ricci scalar is obtained as function of time! and this...- sadegh4137
- Thread
- Frw metric Metric Ricci scalar Scalar
- Replies: 3
- Forum: Special and General Relativity
-
G
Double contraction of curvature tensor -> Ricci scalar times metric
Double contraction of curvature tensor --> Ricci scalar times metric I'm trying to follow the derivation of the Einstein tensor through double contraction of the covariant derivative of the Bianchi identity. (Carroll presentation.) Only one step in this derivation still puzzles me. What I...- gabeeisenstei
- Thread
- Contraction Curvature Curvature tensor Metric Ricci scalar Scalar Tensor
- Replies: 2
- Forum: Special and General Relativity
-
C
Need to find the Ricci scalar curvature of this metric
Need to find the Ricci scalar curvature of this metric: ds2 = e2a(z)(dx2 + dy2) + dz2 − e2b(z)dt2I tried to find the solution, but failed to pass the calculation of Riemann curvature tensor: <The Christoffel connection> Here a'(z) denotes the first derivative of a(z) respect to z...- chinared
- Thread
- Curvature Metric Ricci scalar Scalar
- Replies: 5
- Forum: Special and General Relativity
-
C
Need to find the Ricci scalar curvature of this metric
Homework Statement Need to find the Ricci scalar curvature of this metric: ds2 = e2a(z)(dx2 + dy2) + dz2 − e2b(z)dt2 Homework Equations The Attempt at a Solution I tried to find the solution, but failed to pass the calculation of Riemann curvature tensor: <The Christoffel...- chinared
- Thread
- Curvature Metric Ricci scalar Scalar
- Replies: 1
- Forum: Advanced Physics Homework Help
-
U
EFE's question regarding Ricci scalar
Quick question about the EFE's. When writing the einstein tensor G_{\mu\nu}=R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}, and using the definition of the Ricci scalar R=g^{\mu\nu}R_{\mu\nu}, how does this not give you problems when you expand out R so that the second term becomes...- unchained1978
- Thread
- Ricci scalar Scalar
- Replies: 2
- Forum: Special and General Relativity
-
S
I need to calculate δR: R is Ricci scalar
I need to calculate δR: R is Ricci scalar- sourena
- Thread
- Ricci scalar Scalar
- Replies: 19
- Forum: Special and General Relativity
-
A
Finding Ricci Scalar Constant Nonzero Line Elements
i need examplees where the ricci scalar is constant but nonzero . Particulary i search examples of line element. Pd: this is not a homework,- alejandrito29
- Thread
- Constant Elements Line Ricci scalar Scalar
- Replies: 4
- Forum: Special and General Relativity
-
B
Vanishing Ricci scalar always implies vacuum?
I have been searching through the literature and popular textbooks for this simple answer. I know that in the absence of soures, i.e. matter fields the Ricci scalar is zero. This is synonymous with saying that the Ricci scalar vanishes in vacuum and that the resulting space is flat. However...- blakeredfield
- Thread
- Ricci scalar Scalar Vacuum
- Replies: 8
- Forum: Special and General Relativity
-
Logic of E-H action, ricci scalar, cosmological constant?
Logic of E-H action, ricci scalar, cosmological constant?? This crazy thread is mean to stimulate some reflections on the logic of Einsteins Equations. It would be interesting if those who have any ideas can join. Maybe it could be enlightning? The common way of thinking about GR is that we...- Fra
- Thread
- Constant Cosmological Cosmological constant Logic Ricci scalar Scalar
- Replies: 61
- Forum: Beyond the Standard Models
-
D
Can the Ricci Scalar Depend on Spacetime Coordinates?
Does it make sense for the Ricci Scalar to be a function of the spacetime coordinates? In previous calculations I have carried out in the past, everytime the Ricci Scalar has been returned as a constant, rather than being explicitly dependent on the coordinates. Thanks for any replies- div curl F= 0
- Thread
- Ricci scalar Scalar
- Replies: 3
- Forum: Special and General Relativity
-
G
Surface with Ricci scalar equal to two
A two-dimensional Rienmannian manifold has a metric given by ds^2=e^f dr^2 + r^2 dTHETA^2 where f=f(r) is a function of the coordinate r Eventually I calculated that Ricci scalar is R=-1/r* d(e^-f)/dr if e^-f=1-r^2 what is this surface? In this case R comes to be equal to 2 I've...- Giammy85
- Thread
- Ricci scalar Scalar Surface
- Replies: 7
- Forum: Differential Geometry
-
G
Surface with Ricci scalar equal to two
A two-dimensional Rienmannian manifold has a metric given by ds^2=e^f dr^2 + r^2 dTHETA^2 where f=f(r) is a function of the coordinate r Eventually I calculated that Ricci scalar is R=-1/r* d(e^-f)/dr if e^-f=1-r^2 what this surface is? In this case R comes to be equal to 2 I've...- Giammy85
- Thread
- Ricci scalar Scalar Surface
- Replies: 1
- Forum: Advanced Physics Homework Help
-
C
From the scalar of curvature (Newman-Penrose formalism) to the Ricci scalar
I calculate trace-free Ricci scalars (Phi00, Phi01,Phi02, etc) and scalar of curvature (Lambda=R/24) in Newman-Penrose formalism using a computer package. How can I find the Ricci scalar out of them? I though R was the Ricci scalar but Lambda comes non-zero for a spacetime whose Ricci scalar is...- cosmicstring1
- Thread
- Curvature Ricci scalar Scalar
- Replies: 8
- Forum: Special and General Relativity
-
T
Searching for Ricci Scalar in Schwarzschild Metric
I searched the net for the Ricci scalar for the Schwarzschild metric but in vain. Can anyone tell me what's the Ricci scalar? Are there any standard list or tables that records down the properties of any metric for GR?- touqra
- Thread
- Metric Ricci scalar Scalar Schwarzschild Schwarzschild metric
- Replies: 2
- Forum: Special and General Relativity