Ricci Scalar For Astronomical Body

In summary, the Ricci scalar is a mathematical quantity derived from the Ricci curvature tensor, which plays a crucial role in general relativity and cosmology. It quantifies the degree to which the geometry of spacetime deviates from flatness due to the presence of mass and energy. For astronomical bodies, the Ricci scalar helps in understanding the gravitational effects of these bodies on their surrounding spacetime, influencing phenomena such as the formation of structures in the universe, the behavior of light, and the dynamics of galaxies. Its application is essential for modeling the evolution of cosmic structures and the overall dynamics of the universe.
  • #1
dsaun777
296
39
What would be a rough estimate for the Ricci scalar curvature of an astronomical object like the sun? Assuming the sun is a perfect fluid and you are calculating the rest frame of the sun, only the density component would be factored in. Assuming the sun is roughly 2*1030 kg. Please just make very simplified assumptions, I am just looking for an estimate in terms of m-2. Is it just the Einstein gravity constant times the energy density?
 
Physics news on Phys.org
  • #2
dsaun777 said:
What would be a rough estimate for the Ricci scalar curvature of an astronomical object like the sun?
There is no such thing as "the" Ricci scalar curvature for a large object. The Ricci scalar is a quantity at a particular event in spacetime, not a global quantity.

A rough estimate of the Ricci scalar at a particular point in a perfect fluid is ##(8 \pi G / c^4) ( \rho c^2 + 3 p )##, where ##\rho## is the density and ##p## is the pressure. So you can get a rough "average" value for a large body by using average values of ##\rho## and ##p##. For most bodies, like the Sun, ##p## is so small compared to ##\rho c^2## that it can be ignored. So an "average" estimate would be ##(8 \pi G / c^2) \rho_\text{average}##. The average density is ##M / (4 \pi R^3 / 3)##, so the "average" Ricci scalar would be ##6 G M / R^3 c^2##.
 
  • Like
Likes dsaun777
  • #3
PeterDonis said:
The average density is ##M / (4 \pi R^3 / 3)##, so the "average" Ricci scalar would be ##6 G M / R^3 c^2##.
Yes, that is what I thought. Thanks.
 
Back
Top