1 is by definition 0.999999999 9?

  • Thread starter Thread starter adarpodracir
  • Start date Start date
  • Tags Tags
    Definition
adarpodracir
Messages
5
Reaction score
0
Hi there,

I have a question regarding this statement:

35jvtvt.png


My question is whether we can say so...

Thank you very much!
 
Mathematics news on Phys.org
OP, the answer is that .999... = 1. It's an equality. They're two expressions that represent the same number.

The reason this is so is that .999... is defined as the infinite sum

9/10 + 9/100 + 9/1000 + ...

This is a geometric series whose sum is 1. This is proven in first-year calculus.

Another way to see it is that there's no distance between the number denoted by .999... and the number denoted by 1. That is, suppose you say, well, .999... is 1/zillion away from1. But I'll just point out that if you take enough 9's, you'll eventually get WITHIN 1/zillion of 1.

So if there's no conceivable positive difference between .999... and 1, then they must represent the same number.

Possible conceptual objections to this reasoning are things like:

* "But how can you have two different expressions for the same number?" Easy. 4 and 2 + 2 are two different expressions for the same number. It happens all the time.

* There must be an "infinitesimal" difference between 1 and .999..." In the standard real number system, there are no infinitesimals. A distance is either zero or positive. Since there's no positive distance between .999... and 1, the distance between them is zero and they're the same number.

Hope this helps. There are discussions of this topic all over the net.
 
Last edited:
There is already a thread about this. Please visit the Frequently Asked Questions subforum.
 
Do you realize the question you ask in your post and the question you ask in the title are quite different?
 
Please read this: https://www.physicsforums.com/showthread.php?t=507001
 
Last edited by a moderator:
Many thanks to all of you for reply. Everything is clear now.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
14
Views
2K
Replies
3
Views
2K
Replies
5
Views
2K
Replies
4
Views
1K
Replies
1
Views
1K
Replies
7
Views
2K
Replies
2
Views
1K
Replies
3
Views
2K
Back
Top