B Odd or Even? -1/x: Origin Symmetric?

  • B
  • Thread starter Thread starter FortranMan
  • Start date Start date
  • Tags Tags
    even
AI Thread Summary
The function -1/x is classified as an odd function because it satisfies the condition f(-x) = -f(x). It is also origin symmetric, meaning that if (x, y) is on the graph, then (-x, -y) is also present. The discussion clarifies that origin symmetry does not restrict the function to specific quadrants; it can exist in any quadrant as long as the symmetry condition holds. The proper definition of symmetry involves using universal quantifiers to express the relationship between points on the graph. Overall, -1/x meets the criteria for being both odd and origin symmetric.
FortranMan
Messages
30
Reaction score
0
Is the function -1/x an odd or even function? Is it origin symmetric? For a function to be origin symmetric, must it lie in the 1st and 3rd quadrant or can it lie in the 2nd and 4th quadrant? I suspect it is odd and origin symmetric, but I don't know if I am missing some fine math rule/definition regarding symmetry.
 
Mathematics news on Phys.org
FortranMan said:
Is the function -1/x an odd or even function? Is it origin symmetric? For a function to be origin symmetric, must it lie in the 1st and 3rd quadrant or can it lie in the 2nd and 4th quadrant? I suspect it is odd and origin symmetric, but I don't know if I am missing some fine math rule/definition regarding symmetry.
What are the definitions of odd, even and origin symmetric?
 
It is simply odd ##-\frac{-1}{x}=\frac{1}{x}##.
 
As Perok suggested, this is about knowing the definitions.
A function, f(x), is "even" if f(-x)= f(x) and "odd" if f(-x)= -f(x).
Replacing x with -x in f(x)= -1/x then f(-x)= -1/(-x)= 1/x= -(-1/x)= -f(x).

"Symmetric about the origin" means that if (x, y) is on the graph, so is (-x, -y). With y= -1/x, (x, -1/x) is on the graph and so is (-x, -1/(-x))= (-x, 1/x)= (-x, -(-1/x)).
 
So to answer the question about the symmetry of -1/x, a function is origin symmetric if EITHER

For every (x,y) on graph, so is (-x,-y).
or
For every (-x,y) on graph, so is (x,-y).
 
FortranMan said:
So to answer the question about the symmetry of -1/x, a function is origin symmetric if EITHER

For every (x,y) on graph, so is (-x,-y).
or
For every (-x,y) on graph, so is (x,-y).
Both conditions are identical. The first is the proper way of stating the second.
 
Why is the first way more proper?
 
FortranMan said:
Why is the first way more proper?
When you write "For every (x,y) on graph, so is (-x,-y)", you are invoking a quantifier. In this case it is a Universal quantifier, "for all" (in symbolic form: ##\forall##).

The typical form of a universal quantifier is "for all <variable[s]> [in range], expression". The first occurrences of x and y in the statement are dummy variables. They exist simply to let the reader know which variables are being quantified over. As such, they should be variable names only, not expressions. The subsequent occurrences of x and y within the expression can be used freely.

If you've done computer programming, a lot of concepts carry over into mathematical discourse. A quantifier opens up a scope in which new variables are declared. The variable list in a quantifier amounts to a declaration of variables applicable to the scope. Rather like formal parameters in a called function. The function header has variable names for the formal parameters, not expressions.
 
Last edited:
FortranMan said:
Why is the first way more proper?
Because both x and y could be positive or negative. You're tacitly assuming that (x, y) is a point in the first quadrant. For example, if x = -3 and y = 2, then (x, y) is a point in the second quadrant.
 
  • Like
Likes jbriggs444

Similar threads

Back
Top