How Can This Non-Separable First Order ODE Be Solved?

  • Thread starter Thread starter mmh37
  • Start date Start date
  • Tags Tags
    First order Ode
mmh37
Messages
56
Reaction score
0
Does anyone see how one can tackle the following ODE?

[2y*exp^{y/x} + x}] \frac {dy} {dx} -2x - 2y = 0

that is my attempt:

rearrange to get

dy/dx = \frac {2x + 2y} {2y*exp^{y/x}-x}

I do not see how to go on from here. Surely, the ODE is not seperabale and I don't find a way to get the integrating factor here.

thanks for any hints!

[edit:] for a more clearly written version of the ODE see attached file
 

Attachments

  • Zwischenablage01.jpg
    Zwischenablage01.jpg
    2.2 KB · Views: 504
Last edited:
Physics news on Phys.org
First thought would be to try a change of variable, u = y/x, so

du/dx = (1/x) dy/dx - y/x2 = (1/x) dy/dx - u/x
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top