1st order differential equation

subzero0137
Messages
91
Reaction score
4
Find the general solution of the first order differential equation (y+x^{2}y)\frac{dy}{dx}=3x+xy^{2}, with y(1)=1.



My attempt:
\frac{y}{3+y^{2}}dy=\frac{x}{1+x^{2}}dx ∴ \frac{1}{2}\int \frac{2y}{3+y^{2}}dy=\frac{1}{2}\int \frac{2x}{1+x^2}dx
=\frac{1}{2}ln|3+y^{2}|=\frac{1}{2}ln|1+x^{2}|+C ∴ y^{2}+3=x^{2}+1+e^{C} ∴ y=\pm\sqrt{x^{2}-2+e^{C}} Applying boundary conditions gives 1=\pm\sqrt{1^{2}-2+e^{C}} \Rightarrow e^{C}=2 Therefore y=\pm x.


Is this right?
 
Physics news on Phys.org
subzero0137 said:
y^{2}+3=x^{2}+1+e^{C}

Not quite right here. Pay particular attention to your exponential rules. Remember that

a^{b+c}=a^ba^c
 
Mentallic said:
Not quite right here. Pay particular attention to your exponential rules. Remember that

a^{b+c}=a^ba^c

Ohhh! Of course...silly me.
 
subzero0137 said:
Ohhh! Of course...silly me.

Don't worry, I answered a whole homework problem set on this topic with the exact same mistake in each and every question haha :biggrin:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top