2 problems in Dimensional analysis

AI Thread Summary
To determine the dimensions of the diffusion constant D in the equation N = -D (n2 – n1)/(x2 – x1), one must first identify the units of each variable involved. The left side, N, represents the number of particles crossing per unit area per unit time, while n1 and n2 denote particle density (particles per unit volume) at positions x1 and x2. By rearranging the equation to isolate D, and substituting the corresponding units for each variable, the dimensions of D can be derived. This approach simplifies the problem and leads to a clear understanding of the diffusion constant's dimensions. Understanding these relationships is crucial for solving problems in dimensional analysis.
ishwar
Messages
1
Reaction score
0

Homework Statement



The number of particles crossing per unit area perpendicular to X-axis in unit time is N = -D (n2 – n1)/(x2 – x1)
Where n1 and n2 are number of particles per unit volume for the value of x1 and x2 respectively. What are the dimensions of diffusion constant D?


Can anyone please tell me how to start this problem? Thanks
 
Physics news on Phys.org
ishwar said:

Homework Statement



The number of particles crossing per unit area perpendicular to X-axis in unit time is N = -D (n2 – n1)/(x2 – x1)
Where n1 and n2 are number of particles per unit volume for the value of x1 and x2 respectively. What are the dimensions of diffusion constant D?


Can anyone please tell me how to start this problem? Thanks

The first you need to do is know the units of each variable in the equation. So, the two n-terms, the two x-terms and the N at the left side.

Then, put all these variables at one side and D at the other side of the equality. Replace all the variables by their associated unit and you are done.

marlon
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top