206.08.05.44 partial fraction decomposition

Click For Summary
SUMMARY

The forum discussion focuses on the method of partial fraction decomposition applied to the integral $\int \frac{4x^3+6x^2+128x}{x^5+32x^3+256x}dx$. Participants detail the decomposition into simpler integrals, specifically $\int \frac{4}{x^2+16} \, dx$, $3\int \frac{2x}{(x^2+16)^2} \, dx$, and $64\int \frac{1}{(x^2+16)^2} \, dx$. The discussion emphasizes the importance of back substitution and correcting sign errors in the integration process, ultimately leading to the solution $\frac{2x-3}{x^2+16}+\frac{3\arctan\left(\frac{x}{4}\right)}{2}+C$.

PREREQUISITES
  • Understanding of integral calculus and techniques of integration
  • Familiarity with partial fraction decomposition
  • Knowledge of trigonometric substitutions in integrals
  • Ability to perform back substitution in integration
NEXT STEPS
  • Study the method of partial fraction decomposition in detail
  • Learn about trigonometric substitutions in integrals, specifically $\tan$ and $\sec$ functions
  • Practice back substitution techniques in integration problems
  • Explore advanced integration techniques, including integration by parts and reduction formulas
USEFUL FOR

Students and educators in calculus, mathematicians focusing on integration techniques, and anyone seeking to improve their skills in solving complex integrals using partial fraction decomposition.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{206.08.05.44}$
$\textsf{Use the method of partial fraction decomposition}\\$
\begin{align*}
\displaystyle
I_{44}
&=\int \frac{4x^3+6x^2+128x}{x^5+32x^3+256x}dx\\
&=4\int \frac{1}{x^2+16} \, dx
+6\int \frac{x}{(x^2+16)^2} \, dx
+64\int \frac{1}{(x^2+16)^2} \, dx
\end{align*}$\textsf{so far ? but before using u subst can we use $\ln$ on this}$
 
Physics news on Phys.org
Good!

Suggestions:

Write as

$$\int\frac{4}{x^2+16}\text{ d}x$$

$$3\int\frac{2x}{(x^2+16)^2}\text{ d}x$$

$$64\int\frac{1}{(x^2+16)^2}\text{ d}x$$

First one: Differentiate $\arctan\left(\frac x4\right)$

Second one: $u=x^2+16$

Third one: $4\tan\theta=x$
 
so then,
$$\int\frac{4}{x^2+16}\text{ d}x=\arctan\left(\frac x4\right)$$

with $u=x^2+16 \therefore du=2x \, dx$

$$3\int\frac{2x}{(x^2+16)^2}\text{ d}x=3\int\frac{1}{u^2} du = \frac{3}{u}$$

with $x=4\tan\theta \therefore dx=4 \sec^2{x} dx$

$$64\int\frac{1}{(x^2+16)^2}\text{ d}x
=64\int \frac{4 \sec^2{x}}{(16(\tan^2\left({x}\right)+1))^2} \, dx
=4^3\int\frac{4\sec^2(x)}{4^4 sec^4(x)} \, dx
=\int \cos^2(x) \ dx
=\frac{\sin(x)\cos{x}}{2}+\frac{x}{2}$$

$\textit{this is as far as I got... loan time on library pc ran out,,, but so far?}$:cool:

$\textit{integral calculator returned }$

$\dfrac{2x-3}{x^2+16}+\dfrac{3\arctan\left(\frac{x}{4}\right)}{2}+C$

$\textit{but don't see how it got there?}$
 
Last edited:
First one's ok. You've made a sign error on the second one and haven't completed the back-sub. For the third, you should be integrating with respect to theta. I'm sure this is a notation error but at any rate, get rid of it and continue with the back-sub.
 
with $u=x^2+16 \therefore du=2x \, dx$ $3\int\frac{2x}{(x^2+16)^2}\text{ d}x=3\int\frac{1}{u^2} du = \frac{3}{u}$ back substitute $u=x^2+16$
$\frac{3}{x^2+16}$with $x=4\tan\theta \therefore dx=4 \sec^2{\theta} d\theta$$64\int\frac{1}{(x^2+16)^2}\text{ d}x
=64\int \frac{4 \sec^2{\theta}}{(16(\tan^2\left({\theta}\right)+1))^2} \, d\theta
=4^3\int\frac{4\sec^2(\theta)}
{4^4 sec^4(\theta)} \, d\theta
=\int \cos^2(\theta) \ dx
=\frac{\sin(\theta)\cos{\theta}}{2}+\frac{\theta}{2}$
back substitute $\theta=\arctan\left(\frac{x}{4}\right)$$\frac{2x}{x^2+16}$then finally, $\arctan\left(\frac{x}{4}\right)+\frac{3}{x^2+16}+\frac{2x}{x^2+16}+C$

something is missing!
 
Last edited:
Differentiate $3/u$.

What is $\frac{\sin(\theta)\cos(\theta)}{2}+\frac{\theta}{2}$ in terms of $x$?
 
greg1313 said:
Differentiate $3/u$.

What is $\frac{\sin(\theta)\cos(\theta)}{2}+\frac{\theta}{2}$ in terms of $x$?

$\displaystyle\theta=\arctan\left(\frac{x}{4}\right)$
then
$\displaystyle\frac{\sin(\theta)\cos(\theta)}{2}+\frac{\theta}{2}=
\frac{\arctan\left(\frac{x}{4}\right)}{2}+\frac{2x} {x^2+16}$
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
1K