- 6,221
- 31
For the differential equation
\frac{d^2y}{dx^2}+4 \frac{dy}{dx}=sinx
One root of the auxiliary equation is '0' meaning the particular integral for the right hand side is x(Asinx+Bcosx). But is there any formal proof for making this claim that for 0 as one root is it is x(Asinx+Bcosx) or 0 were the two roots, the PI would be x^2(Asinx+Bcosx)?
\frac{d^2y}{dx^2}+4 \frac{dy}{dx}=sinx
One root of the auxiliary equation is '0' meaning the particular integral for the right hand side is x(Asinx+Bcosx). But is there any formal proof for making this claim that for 0 as one root is it is x(Asinx+Bcosx) or 0 were the two roots, the PI would be x^2(Asinx+Bcosx)?