3D Coordinate transformation and Euler Angles

Click For Summary
SUMMARY

This discussion focuses on the transformation of 3D coordinates in a galaxy formation simulation to align the view with the principal axis of the disk. The user is attempting to rotate the coordinate system so that the z' axis aligns with the principal axis derived from the moment of inertia tensor. While the user initially considers using Euler angles for the transformation, they discover that constructing the rotation matrix directly from the new base vectors is a more effective approach. The conversation emphasizes the importance of understanding linear algebra concepts in building rotation matrices.

PREREQUISITES
  • Understanding of 3D coordinate systems and transformations
  • Familiarity with moment of inertia tensor calculations
  • Knowledge of eigenvalues and eigenvectors
  • Basic linear algebra concepts, particularly rotation matrices
NEXT STEPS
  • Learn how to construct rotation matrices from base vectors
  • Study the properties of eigenvalues and eigenvectors in physical simulations
  • Explore advanced topics in 3D transformations, such as quaternions
  • Investigate the application of rotation matrices in computer graphics
USEFUL FOR

Researchers and developers working on simulations in astrophysics, computer graphics professionals, and anyone interested in 3D coordinate transformations and linear algebra applications.

clandarkfire
Messages
31
Reaction score
0
Hello,

I'm running a galaxy formation simulation. The output specifies the coordinates in (x, y, z) of all the particles in a galaxy, which usually fall in a disk. The orientation of the disk depends on the initial conditions, but it is generally not aligned with any of the coordinate axes.

I'm trying to write a function that will allow me to view the disk face on, rather than along one of the coordinate axes. E.g., I can view the galaxy along the z-axis by plotting x vs y for all particles, but unless the galaxy is in the x-y plane, I look at it at some arbitrary angle.

Right now, I'm finding the moment of inertia tensor of all the particles in the galaxy and using this to find the principal axes. As I would expect, the principal axis corresponding the the largest eigenvalue (e.g., moment) is a vector perpendicular to the disk.

Now I would like to "view" the galaxy looking along this principal axis. That is, I want to rotate my coordinate axes so that the z' axis is aligned with the principal axis. This will give all my particles new coordinates (x', y', and z'), and plotting (x' vs y') should show the disk face-on.

I know how to do this transformation using rotation matrices in terms of the angles α, β, and γ that I rotate around the x, y, and z axes, or in terms of the Euler angles. But for the life of me, I can't figure out how to properly find these angles if I want the z' axis to be aligned with the principal axis, say v = (v_x, v_y, v_z). My original thought was to set α=0 and then set β to the polar angle, given by β=v_z/sqrt(v_x^2 + v_y^2 + v_z^2). Finally, I'd set γ to the azimuthal angle.

This works if v is in the x-y, x-z, or y-z planes. But for an arbitrary v, it doesn't, because these rotations don't commute.

So how can I find α, β, and γ such that z' will align with an arbitrary v?

Thanks so much!
 
Physics news on Phys.org
clandarkfire said:
I can't figure out how to properly find these angles if I want the z' axis to be aligned with the principal axis
Do you actually need the angles? You can build the rotation matrix directly from the new base vectors. But you need all 3 of them, not just z'. Your problem is undetermined as stated now.
 
  • Like
Likes   Reactions: clandarkfire
A.T. said:
Do you actually need the angles? You can build the rotation matrix directly from the new base vectors. But you need all 3 of them, not just z'. Your problem is undetermined as stated now.
That would work too, but I'm not sure how I would go about building the rotation matrix from the principal axes -- I always learned rotations in terms of angles.
 
Last edited:
clandarkfire said:
but I'm not sure how I would go about building the rotation matrix from the principal axes
The base vectors of your target system are the rows of the matrix R, then p' = R * p.
 
  • Like
Likes   Reactions: clandarkfire
A.T. said:
The base vectors of your target system are the rows of the matrix R, then p' = R * p.
Oh gosh, that's much easier that I was thinking. It's been too long since I took linear algebra.

Thanks a million!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
991
Replies
17
Views
3K
Replies
2
Views
1K