- 2,570
- 2
I've been told (in class, online) that the ground state of the 3D quantum harmonic oscillator, ie:
\hat H = -\frac{\hbar^2}{2m} \nabla^2 + \frac{1}{2} m \omega^2 r^2
is the state you get by separating variables and picking the ground state in each coordinate, ie:
\psi(x,y,z) = A e^{-\alpha(x^2+y^2+z^2)}
where \alpha = m \omega/2\hbar, and this state has energy 3\hbar \omega /2 (the sum of that from each coordinate).
On the other hand, going back to the schrodinger equation, assume a spherically symmetric solution (ie, l=0) and make the transformation \chi(r)= r \psi(r). Then the schrodinger equation becomes:
-\frac{\hbar^2}{2m} \frac{d^2 \chi}{dr^2} + \frac{1}{2} m \omega^2 r^2 \chi =E \chi
which is the 1D SHO equation, and so we have the solution:
\chi(r) = B e^{-\alpha r^2}
or:
\psi(r) = \frac{B}{r} e^{-\alpha r^2}
with an energy \hbar \omega /2. In fact, the 1st excited state of the 1D harmonic oscillator, with energy 3\hbar \omega /2, is \chi(r)=A r e^{-\alpha r^2}, and this is just the solution found above by separating variables. So that wasn't the ground state, this new one (which isn't in separated variables form) is. Is this a correct analysis? Is there a general way to determine if a given state is the ground state of a given hamiltonian?
\hat H = -\frac{\hbar^2}{2m} \nabla^2 + \frac{1}{2} m \omega^2 r^2
is the state you get by separating variables and picking the ground state in each coordinate, ie:
\psi(x,y,z) = A e^{-\alpha(x^2+y^2+z^2)}
where \alpha = m \omega/2\hbar, and this state has energy 3\hbar \omega /2 (the sum of that from each coordinate).
On the other hand, going back to the schrodinger equation, assume a spherically symmetric solution (ie, l=0) and make the transformation \chi(r)= r \psi(r). Then the schrodinger equation becomes:
-\frac{\hbar^2}{2m} \frac{d^2 \chi}{dr^2} + \frac{1}{2} m \omega^2 r^2 \chi =E \chi
which is the 1D SHO equation, and so we have the solution:
\chi(r) = B e^{-\alpha r^2}
or:
\psi(r) = \frac{B}{r} e^{-\alpha r^2}
with an energy \hbar \omega /2. In fact, the 1st excited state of the 1D harmonic oscillator, with energy 3\hbar \omega /2, is \chi(r)=A r e^{-\alpha r^2}, and this is just the solution found above by separating variables. So that wasn't the ground state, this new one (which isn't in separated variables form) is. Is this a correct analysis? Is there a general way to determine if a given state is the ground state of a given hamiltonian?
Last edited: