MHB -4.3.1 find quadratic eq given 3 pts

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Quadratic
Click For Summary
To find the quadratic equation given the points (-3,0), (3,0), and (0,-4), the general form y = ax^2 + bx + c can be used. By substituting (0,-4) into the equation, it is determined that c = -4. The roots at x = -3 and x = 3 lead to the equation y = k(x-3)(x+3), and substituting x = 0 gives -9k = -4, resulting in k = 4/9. Thus, the quadratic equation is y = (4/9)(x-3)(x+3). This method effectively combines substitution and root analysis to derive the equation.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
how do you find the quadratic equation given (-3,0) (3,0) and (0,-4)

thus y=k(x-3)(x+3) for the zero's but how do you find k or any other better method of finding the equation

thanks much(Cool)
 
Last edited:
Mathematics news on Phys.org
This can be done by looking at the general form of a quadratic equation: [math]y=ax^2+bx+c[/math]. We need to solve for a,b and c in order to write our equation and we have three points so we can do this through substitution. First use (0,-4) for (x,y) and you get [math]-4=a(0)^2+b(0)+c[/math] which means that c=-4. Now use the other two points the same way and you will have to solve a two variable system of equations for a and b. Once you have a,b and c you have your answer.
 
karush said:
how do you find the quadratic equation given (-3,0) (3,0) and (0,-4)

thus y=k(x-3)(x+3) for the zero's but how do you find k or any other better method of finding the equation
Starting from y=k(x-3)(x+3) (which gives the value 0 when x = 3 or –3), all you need to do is to put x=0 to see that y = –9k when x=0. But you want y to be –4 when x=0. Therefore –9k = –4. So k = 4/9, and $y = \frac49(x-3)(x+3).$
 
karush said:
how do you find the quadratic equation given (-3,0) (3,0) and (0,-4)

Another way (if you have covered the Lagrange Interpolation Polynomial):

$y=0L_1+0L_2-4L_3=-4\dfrac{(x+3)(x-3)}{(0+3)(0-3)}=\dfrac{4}{9}(x+3)(x-3)$
 
Fernando Revilla said:
Another way (if you have covered the Lagrange Interpolation Polynomial):

$y=0L_1+0L_2-4L_3=-4\dfrac{(x+3)(x-3)}{(0+3)(0-3)}=\dfrac{4}{9}(x+3)(x-3)$

no have not heard of it. looks valuable tho so will look it up thanks
 
$y = \dfrac{4}{9}(x-3)(x+3)$

ok I can't seem to write tikx to plot this

$\begin{tikzpicture}[scale=0.50]
%preamble \usepackage{pgfplots}
\begin{axis}[xmin=-3.5, xmax=3.5, ymin=-5, ymax=5, axis lines=middle, ticks=none]
\addplot[
draw = black, smooth, ultra thick,
domain=-4:4,
] {exp((4/9)*(x^2-9)}
foreach \x in {-3,3} { (axis cs:{\x},0) node[below left] {\x} };
\end{axis}
\end{tikzpicture}$
$$y = \dfrac{4}{9}(x-3)(x+3)$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K