What is the limit of (1 - 1/n)^n as n approaches infinity?

  • Thread starter Thread starter TranscendArcu
  • Start date Start date
  • Tags Tags
    Infinity Limits
TranscendArcu
Messages
277
Reaction score
0

Homework Statement



Screen_shot_2012_04_04_at_9_13_04_AM.png


The Attempt at a Solution


So I know that the limit as n → ∞ of (1 - \frac{1}{n})^n = \frac{1}{e}. Using this information, is it legitimate to observe:

The limit as n → ∞ of (1 - \frac{1}{n})^{n ln(2)} = the limit as n → ∞ of ((1 - \frac{1}{n})^n)^{ln(2)} = e^{-1 ln(2)} = e^{ln(\frac{1}{2})} = \frac{1}{2}
 
Physics news on Phys.org
Looks good to me.
 
TranscendArcu said:

Homework Statement



Screen_shot_2012_04_04_at_9_13_04_AM.png


The Attempt at a Solution


So I know that the limit as n → ∞ of (1 - \frac{1}{n})^n = \frac{1}{e}. Using this information, is it legitimate to observe:

The limit as n → ∞ of (1 - \frac{1}{n})^{n ln(2)} = the limit as n → ∞ of ((1 - \frac{1}{n})^n)^{ln(2)} = e^{-1 ln(2)} = e^{ln(\frac{1}{2})} = \frac{1}{2}

Looks ok to me.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top