A (apparently?) non-local quantum field theory

rubbergnome
Messages
14
Reaction score
0
I need to derive the euler-lagrange equations for the following non-local lagrangian density for a complex scalar field ψ

\mathcal{L} = \partial_{\mu}\psi^* \partial_{\mu}\psi - \lambda \int dy\, f(x,y) \psi^*(y) \psi(y)

where λ is the coupling constant, f is a certain real-positive valued function linear in the first argument that satisfies f(x,y)=1/f(y,x) (which also implies f(x,x)=1). The integral is over all spacetime.

Applying the usual euler-lagrange equations shouldn't be correct here. I tried taking the functional derivative of the action S=∫dx L with respect to ψ*and set it equal to zero, and I get

\partial_{\mu}\partial^{\mu}\psi(x) = -\lambda \int dy\, f(y,x) \psi(x)

where indeed we have a non-constant mass term. On the other hand, I used the methods in this paper

http://www.astro.columbia.edu/~lhui/G6047_2012/HowTo.pdf

to derive the feynman rules for the only possible vertex in the theory (this already made me think about a correction to the propagator); I get -iλ∫dxdy f(x,y) which purely depends on f. This result can also be quickly derived with eq. (136) here

http://www2.ph.ed.ac.uk/~egardi/MQFT/mqft_lecture_9_10.pdf

The full propagator is therefore one of a free complex scalar field with mass m²= λ∫dxdy f(x,y). At least this is the result I got, and I'd like to confirm it deriving this mass term in the equations of motion.

I also calculated the leading order correction to the transition amplitude between single-particle states in the canonical formalism, and the result agrees with the above procedure.

The final doubt that arises is this: even if the equations of motions lead to the same result, why would the non-locality in the lagrangian be completely gone, turning into a mass term?

I hope at least part of my post makes sense. Thanks in advance for helping. :)
 
Last edited by a moderator:
Physics news on Phys.org
For some reason I cannot edit the first post anymore. I just wanted to add that x-linearity in f is not required, also because if compromises the positivity. I needed it for other things, but I realized it's not working that way. Deriving the equations of motion shouldn't depend on that anyway.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top