(A+B+C ) ^ (X + Y + Z ) of arbitrary complexity

  • Thread starter Thread starter jebusv20
  • Start date Start date
  • Tags Tags
    Complexity
jebusv20
Messages
3
Reaction score
0
This question relates mostly to computer sciences (my personal field of expertise),
I am trying to find the method for breaking down large floating point (non integer) numbers into a series of integers (so that they can be stored easily), and completing a power operation over them.

for example

1.23 ^ 4.56 = ((1E0)+(2E-1)+(2E-2))^((4E0)+(5E-1)+(6E-2))

I am aware that a program would be able to store quite large floating point numbers (generally up to 16 places of complexity) but, if I were to try and calculate something to 1 million places of accuracy, I will need the above break down)

Im sure it has something to do with pascals triangle which I am fairly sure is good for (a+b)^c, but I don't know how to do (a+b)^(c+d). I know this formula exists because I'm sure calculators use it every day... just not sure how to do it myself. To be clear, this formula does not need to be 'easy' to use, a computer can do billions of integer calculations a second, just need to write the code.
 
Mathematics news on Phys.org
No replies? If its a matter of me not explaining myself please just ask what I mean and what confuses you and I'll try to further explain. If its something that would be really hard to explain, just give it a shot... and if you don't know... well ... feel free to tell your friends who might.

Should we just start with the simple stuff? Purely algebraically how could the following be expressed without the power operation, preferably with a serious of multiplication and addition operations:

(a+b)^(c+d)
 
If you're starting with something like (a+b)^{c+d} just break it into (a+b)^{c}(a+b)^{d} and use the usual http://en.wikipedia.org/wiki/Binomial_theorem for each part of the product, then multiply them together.
 
drag12 said:
If you're starting with something like (a+b)^{c+d} just break it into (a+b)^{c}(a+b)^{d} and use the usual http://en.wikipedia.org/wiki/Binomial_theorem for each part of the product, then multiply them together.

This doesn't help for multiprecision arithmetic with more than 2 digits.
If you want to compute (a+b+c)^n, with n an integer repeated squaring and multiplication
is the best way.

a^(2n) = (a^n)^2
a^(2n+1) = a (a^(2n))

A number of algorithms exist to do fast multiplication of multiprecision numbers. (karatsuba multiplication, fast Fourier transfrom multiplication)

The latter will be much faster for large numbers, but also quite hard to implement. Using a multiprecision library is always an option.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top