(A+B+C ) ^ (X + Y + Z ) of arbitrary complexity

  • Thread starter Thread starter jebusv20
  • Start date Start date
  • Tags Tags
    Complexity
AI Thread Summary
The discussion focuses on breaking down large floating point numbers into integers for easier storage and performing power operations on them. The user seeks a method to express (a+b)^(c+d) without using the power operation, suggesting the use of the binomial theorem for simplification. They note that multiprecision arithmetic presents challenges, especially with more than two digits, and recommend repeated squaring and multiplication for computing powers. Various algorithms, such as Karatsuba multiplication and fast Fourier transform multiplication, are mentioned for efficient handling of multiprecision numbers. Utilizing a multiprecision library is also suggested as a practical solution for complex calculations.
jebusv20
Messages
3
Reaction score
0
This question relates mostly to computer sciences (my personal field of expertise),
I am trying to find the method for breaking down large floating point (non integer) numbers into a series of integers (so that they can be stored easily), and completing a power operation over them.

for example

1.23 ^ 4.56 = ((1E0)+(2E-1)+(2E-2))^((4E0)+(5E-1)+(6E-2))

I am aware that a program would be able to store quite large floating point numbers (generally up to 16 places of complexity) but, if I were to try and calculate something to 1 million places of accuracy, I will need the above break down)

Im sure it has something to do with pascals triangle which I am fairly sure is good for (a+b)^c, but I don't know how to do (a+b)^(c+d). I know this formula exists because I'm sure calculators use it every day... just not sure how to do it myself. To be clear, this formula does not need to be 'easy' to use, a computer can do billions of integer calculations a second, just need to write the code.
 
Mathematics news on Phys.org
No replies? If its a matter of me not explaining myself please just ask what I mean and what confuses you and I'll try to further explain. If its something that would be really hard to explain, just give it a shot... and if you don't know... well ... feel free to tell your friends who might.

Should we just start with the simple stuff? Purely algebraically how could the following be expressed without the power operation, preferably with a serious of multiplication and addition operations:

(a+b)^(c+d)
 
If you're starting with something like (a+b)^{c+d} just break it into (a+b)^{c}(a+b)^{d} and use the usual http://en.wikipedia.org/wiki/Binomial_theorem for each part of the product, then multiply them together.
 
drag12 said:
If you're starting with something like (a+b)^{c+d} just break it into (a+b)^{c}(a+b)^{d} and use the usual http://en.wikipedia.org/wiki/Binomial_theorem for each part of the product, then multiply them together.

This doesn't help for multiprecision arithmetic with more than 2 digits.
If you want to compute (a+b+c)^n, with n an integer repeated squaring and multiplication
is the best way.

a^(2n) = (a^n)^2
a^(2n+1) = a (a^(2n))

A number of algorithms exist to do fast multiplication of multiprecision numbers. (karatsuba multiplication, fast Fourier transfrom multiplication)

The latter will be much faster for large numbers, but also quite hard to implement. Using a multiprecision library is always an option.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top