MHB What Determines the Angular Momentum of a Rolling Boulder?

  • Thread starter Thread starter cbarker1
  • Start date Start date
  • Tags Tags
    Hill Roll
AI Thread Summary
To determine the angular momentum of a rolling boulder, the conservation of energy principle is applied, relating gravitational potential energy to kinetic energy forms. The boulder, with a mass of 90.2 kg and radius of 20 cm, rolls down a 16 m hill, transitioning from potential to both translational and rotational kinetic energy. The equations derived show that the angular velocity can be calculated using the height difference and the moment of inertia. The final angular momentum is expressed as L = Iω, where I is the moment of inertia and ω is the angular velocity. This approach provides a framework for calculating angular momentum at various points during the boulder's descent.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Every one,
Here is the question. How to get started with this question?
A spherical boulder of mass 90.2 kg and radius 20 cm rolls without slipping down a hill 16 m high from rest.
(a)
What is its angular momentum about its center when it is half way down the hill? (Enter the magnitude in kg [FONT=&quot]· m2/s.)
kg [FONT=&quot]· m2/s


(b)
What is its angular momentum about its center when it is at the bottom? (Enter the magnitude in kg [FONT=&quot]· m2/s.)
kg [FONT=&quot]· m2/s


Thanks,
Cbarker1
 
Mathematics news on Phys.org
Cbarker1 said:

A spherical boulder of mass 90.2 kg and radius 20 cm rolls without slipping down a hill 16 m high from rest.
(a)
What is its angular momentum about its center when it is half way down the hill? (Enter the magnitude in kg · m2/s.)
kg · m2/s


(b)
What is its angular momentum about its center when it is at the bottom? (Enter the magnitude in kg · m2/s.)
kg · m2/s


conservation of energy (assuming the boulder starts from rest) ...

initial gravitational potential energy = final gravitational potential energy + translational kinetic energy + rotational kinetic energy

$mgh_0 = mgh_f + \dfrac{1}{2}mv^2 + \dfrac{1}{2}I \omega^2$

note $v = r\omega$ ...

$mgh_0 = mgh_f + \dfrac{1}{2}m(r\omega)^2 + \dfrac{1}{2}I \omega^2$

$2mg(h_0-h_f) = m(r\omega)^2 + I \omega^2$

$2mg(h_0-h_f) = \omega^2(mr^2 + I)$

$\omega = \sqrt{\dfrac{2mg(h_0-h_f)}{mr^2 + I}}$

finally, note $L = I\omega$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top