Undoubtedly0
- 98
- 0
It can be shown from Euler's formula that
\left(-1\right)^x = \cos(\pi x) + i\sin(\pi x)
However, consider x = 2/3. The left expression gives
\left(-1\right)^\frac{2}{3} = \left(\left(-1\right)^2\right)^\frac{1}{3} = \left(1\right)^\frac{1}{3} = 1
while the right expression gives
\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) = -\frac{1}{2} + \frac{\sqrt{3}}{2}i
What has gone wrong here? Thanks all.
\left(-1\right)^x = \cos(\pi x) + i\sin(\pi x)
However, consider x = 2/3. The left expression gives
\left(-1\right)^\frac{2}{3} = \left(\left(-1\right)^2\right)^\frac{1}{3} = \left(1\right)^\frac{1}{3} = 1
while the right expression gives
\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) = -\frac{1}{2} + \frac{\sqrt{3}}{2}i
What has gone wrong here? Thanks all.