A difficult (for me) 3d shapes problem

  • Thread starter Thread starter ydan87
  • Start date Start date
  • Tags Tags
    3d Shapes
AI Thread Summary
The discussion revolves around deriving the equation of a cylinder defined by a radius r, a point b, and a direction vector n. Participants are translating mathematical expressions into plain English to clarify their meanings, focusing on the relationships expressed through vector operations like cross products. The first two forms describe the geometric relationships involving the radius and the orthogonal unit vector e. There is a request for further explanation of the cross product and its implications in the context of the cylinder's geometry. The conversation emphasizes the importance of understanding these vector concepts to solve the problem effectively.
ydan87
Messages
25
Reaction score
0
If I have a cylinder with a radius r and an axis that passes through point b with the
direction of vector n, show that its equation can be written in any of the following forms:
1) ||(p-b) X n|| = r
2) (p - b) X n = r.e (where e s ia unit vector orthogonal to n)
3) ||(p-b) - ((p-b).n)n|| = r
. = vector-vector dot product
X = vector-vector cross product

Thanks in advance for any guide given...
 
Physics news on Phys.org
hi ydan87! :wink:

start by translating each of 1) 2) and 3) into ordinary english …

what do you get? :smile:
 
Tiny tim :o
1) the length of the vector you get by the cross product of the vector from point p to point b and normal n equals to r, the radius of the cylinder.
2) the vector you get by the cross product above equals to the vector you get by multiplying scalar r with vector e, which is a unit vector orthogonal to n.
If you guide me through those i'll be ok with 3.

Is it clearer now?
 
ydan87 said:
1) the length of the vector you get by the cross product of the vector from point p to point b and normal n equals to r, the radius of the cylinder.
2) the vector you get by the cross product above equals to the vector you get by multiplying scalar r with vector e, which is a unit vector orthogonal to n.

ok :smile:

now also use the words "cos" or "sin" :wink:
 
Can you please explain what you mean? I can't give you the parametric representation if that's what you mean...
 
i meant explain what the cross product is, instead of just saying "cross product"! :smile:
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Since ##px^9+q## is the factor, then ##x^9=\frac{-q}{p}## will be one of the roots. Let ##f(x)=27x^{18}+bx^9+70##, then: $$27\left(\frac{-q}{p}\right)^2+b\left(\frac{-q}{p}\right)+70=0$$ $$b=27 \frac{q}{p}+70 \frac{p}{q}$$ $$b=\frac{27q^2+70p^2}{pq}$$ From this expression, it looks like there is no greatest value of ##b## because increasing the value of ##p## and ##q## will also increase the value of ##b##. How to find the greatest value of ##b##? Thanks

Similar threads

Back
Top