What percentage of bags are rejected due to weight?

AI Thread Summary
The discussion revolves around calculating the percentage of bags rejected due to weight based on a normal distribution with a mean of 250g and a standard deviation of 10g. Bags are rejected if they weigh less than 225g or more than 270g. To find the rejection percentage, the z-scores for these weights are calculated, and the area under the normal distribution curve is referenced. One participant explains how to determine the probabilities associated with these z-scores using a standard normal distribution table. The conversation concludes with the original poster gaining a better understanding of normal distribution concepts.
Matt.D
Messages
25
Reaction score
0
*I have already posted this in another forum, but re-read the rules regarding homework questions.. Mods, I hope this is ok*

Hey guys, I've got this question from my Statistics Homework and wondered if someone could point me to a website or supply some advice as to how to begin to solve the problem.


Bags of sweets are packed by a machine such that the masses (X) have a normal distribution with mean 250g and standard deviation 10g.
A bag is judged to be underweight and rejected if X<225g.
A bag is judged to be overweight and rejected if X>270g
What percentage of bags are rejected?


I've tried a few combinations, but without a formula I don't think I'm making any sense. Can an altered version of the formula for Standard Deviation be used?

Any help always appreciated : )

Matt
 
Physics news on Phys.org
You don't need to calculate the standard deviation in this problem; it's given to you. You should have (either in your textbook or look it up on the net) a plot and table of the normal distribution. As far as I know, it's pretty standard to see the area under the curve from zero to a given z-score tabulated. The z-score is defined as the distance away from the mean as a fraction of the standard deviation (z = \frac{x-\bar x}{\sigma}).

For your problem, you want to find the sum of the probability that a sample is higher than 270 and lower than 225. For a 270, the z-score is (270-250)/10 = 2 (that's how many standard deviations away from the mean it is). If you look up the area under the normal distribution for z = 2, you should get 0.47725 (unless I read off the wrong row or something). That means that ~48% of the data is between z = 0 and z = 2. But you want to know how much of the data is greater than z = 2, so your answer would be 50% - 0.47725 (because the total area under the curve from z = 0 to z = infinity is 50%, right?).

Now do the same thing for the lower rejection point and add the two probabilities together (and express your answer as a percentage).

I hope that gets you going with problems like this.
 
"If you look up the area under the normal distribution for z = 2, you should get 0.47725 (unless I read off the wrong row or something)"

Hi James,

Thanks for your help so far but I've become a little unstuck trying to find 0.47725? I don't understand where that comes from.

Regards

Matt
 
Hi James,

Thanks for all your help. I now understand Normal Distribution that little bit better :)

Matt
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...

Similar threads

Back
Top