checkitagain
- 137
- 1
1 \ - \ \frac{1}{2} \ + \ \frac{1}{3} \ - \ \frac{1}{4} \ + \ ... \ - \ \frac{1}{n - 1} \ + \ \frac{1}{n} \ - \ \frac{1}{2n + 1} \ < \ ln(n), where n is a positive odd integer
I worked this out (rediscovered it) and proved it by induction.
For example, when n = 71 (summing of 71 terms and that 72nd fraction),
it gives five correct decimal digits (and six correct decimal digits
when rounded).
But, \ \ without \ the \ \frac{1}{2n + 1} \ term \ to \ be \ subtracted, \ \ it \ gives \ \ 0.7... \ <br /> (zero \ \ correct \ \ decimal \ \ digits).
I worked this out (rediscovered it) and proved it by induction.
For example, when n = 71 (summing of 71 terms and that 72nd fraction),
it gives five correct decimal digits (and six correct decimal digits
when rounded).
But, \ \ without \ the \ \frac{1}{2n + 1} \ term \ to \ be \ subtracted, \ \ it \ gives \ \ 0.7... \ <br /> (zero \ \ correct \ \ decimal \ \ digits).