A formula for approximating ln(2) and sums of other alternating series

checkitagain
Messages
137
Reaction score
1
1 \ - \ \frac{1}{2} \ + \ \frac{1}{3} \ - \ \frac{1}{4} \ + \ ... \ - \ \frac{1}{n - 1} \ + \ \frac{1}{n} \ - \ \frac{1}{2n + 1} \ < \ ln(n), where n is a positive odd integer



I worked this out (rediscovered it) and proved it by induction.

For example, when n = 71 (summing of 71 terms and that 72nd fraction),

it gives five correct decimal digits (and six correct decimal digits

when rounded).


But, \ \ without \ the \ \frac{1}{2n + 1} \ term \ to \ be \ subtracted, \ \ it \ gives \ \ 0.7... \ <br /> (zero \ \ correct \ \ decimal \ \ digits).
 
Mathematics news on Phys.org
Hey checkitagain.

Have you seen the wikipedia page? If you want to know more about these expansions you need to understand what is known as a series expansion: the taylor series is a good start. Take a look at these links:

http://en.wikipedia.org/wiki/Natural_logarithm#Derivative
http://en.wikipedia.org/wiki/Taylor_series

In terms of convergence properties, that is a whole other kettle of fish. If you want to know about showing convergence for this kind of thing then there are a variety of theorems you can use.

This might give you a start:

http://en.wikipedia.org/wiki/Convergence_(mathematics)#Convergence_and_fixed_point
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top